
www.it-ebooks.info

http://www.it-ebooks.info/

Programming Drupal 7 Entities

Expose local or remote data as Drupal 7 entities
and build custom solutions

Sammy Spets

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Drupal 7 Entities

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1190613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78216-652-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Sammy Spets

Reviewers
James Roughton

Michelle Williamson

Acquisition Editor
James Jones

Lead Technical Editor
Harsha Bharwani

Technical Editors
Sanhita Sawant

Dennis John

Project Coordinator
Suraj Bist

Proofreader
Dirk Manuel

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Since 2004, Sammy Spets has been finding pleasure in his life making Drupal do
wild things. During that time, Sammy volunteered to be a core maintainer for Drupal
6 and a maintainer of the ecommerce module, which was the commerce module of
choice way back when. For the ecommerce module, Sammy made design changes to
the payment system, built a few modules to support payment gateways, and added
PostgreSQL support, among other things.

In 2008, IDG Australia contracted Sammy to design and lead the development of a
hybrid Drupal/legacy platform. The platform allowed IDG developers to gradually
migrate their websites and web applications over to Drupal 6, which was still in beta.
In addition to the platform, Sammy was tasked with creating a module suite for the
IDG staff to create surveys and reports on them. This module suite was built prior to
webform, and leveraged the power of the Drupal 6 Form API in all its glory. Sammy
also trained IDG developers to develop modules and themes in Drupal 6.

Early in 2009, a short contract with Demonz Media in Sydney, Australia brought about
some patches to Ubercart, which Demonz gladly contributed back to the community.

Following that, Sammy travelled to Louisville, Kentucky, USA where he contributed
code to improve the developer experience for developers extending Ubercart by
using its API. Ryan Szrama introduced Sammy to Chick-fil-A and Lyle Mantooth
introduced Sammy to Korean food and some amazing fried chicken.

In 2011, Sammy joined the Magicspark team, building Drupal sites and maintaining
servers. During this time, Sammy built a services platform to feed webform data to
Marketo and LoopFuse from client Drupal sites via Magicspark's servers. In addition
to this, Sammy redeveloped the UI on the Where to Buy page of the Redwood
Systems website using OpenLayers mapping.

Aside from the geeky stuff, Sammy loves to cook, fine-tune recipes, play pool, carve
turns on a snowboard, hit the gym, ride motorcycles, dine fine, and drink champagne.

Programming Drupal 7 Entities, Packt Publishing, is the first book Sammy has authored.
Sammy was the technical reviewer for Migrating to Drupal 7, Packt Publishing.

Sammy can be contacted by e-mail at sammys@sammyspets.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

I would like to thank Jason Chinn from Magicspark for his understanding, his belief
in me, and giving me spare time to write this book. Thank you to my Mum, Anja
Spets, for her unconditional support over the years. To my Dad, Raimo Spets; I
know you would have been proud to see this book published; may you rest in peace.
Thank you to Raija and Markku Tujula for taking care of my Mum.

Thank you to Arphaphorn Phromput (Waew) for filling my life with peace, fun, and
companionship. Last, but not least, I thank my great friends, Martijn Blankers and
Job de Graaff, for pretending to be interested when listening to me rant about this
book. You both are awesome! Beer time!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

James Roughton, received his Bachelor of Science degree in Business
Administration from Christopher Newport College and his Masters degree in Safety
Science from Indiana University of Pennsylvania (IUP). In addition, he is a Certified
Safety Professional (CSP), a Registered Canadian Safety Professional (R-CRSP), and
a Certified Hazard Material Management (M-CHMM). He also holds several training
certifications: Certified Environmental Trainer (CET) and a Certified Instructional
Technologist (CIT) with a certification in Six Sigma Black Belt. He recently became
certified as an InBound Marketer in Social media.

He is an accomplished author and manages his own websites,
www.safetycultureplus.com; and www.jamesroughton.com. He has received
awards for his efforts in safety, and was named the Project Safe Georgia Safety
Professional in 2008 and the Georgia ASSE Chapter Safety Professional of the Year
(SPY) 1998-1999. James is an active member of the Safety Advisory Board of the
Departments of Labor/Insurance of Georgia, and has been an adjunct instructor
for several universities.

James has been very active in developing expertise in social media productivity and
its use in communication of safety culture and safety management system concepts
and information. In his latest project, he as just co-authored a new book entitled
Safety Culture: An Innovated Leadership Approach, Butterworth-Heinemann.

You can use the following links to connect with him:

•	 YouTube: http://www.youtube.com/subscription_center?add_
user=mrjamesroughton

•	 Twitter: http://twitter.com/jamesroughton
•	 LinkedIn: http://www.linkedin.com/in/jamesroughtoncsp
•	 Google +: https://plus.google.com/u/0/102851102730471202754

James is an independent consultant on safety and social media productivity. He has
previously reviewed another book on Drupal.

www.it-ebooks.info

http://www.it-ebooks.info/

Michelle Williamson began her journey with computers in 1994 as the result of
a traumatizing mishap involving a 15-page graduate class paper and an unformatted
floppy disk. She spent 5 years as a staunch Luddite before becoming obsessed with
web development and technology in general. She has been a freelance web developer
since 2000, starting out on Microsoft platforms, then drinking the open source
Kool-Aid in 2008, and since then has devoted her time primarily to Drupal
development. She's an incessant learner and is addicted to head-scratching
challenges, and looks forward to experiencing the continued evolution of
mobile technology.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Understanding Entities	 7

Introducing entities	 8
Entity and solution modules	 9
Introducing entity types, bundles, and fields	 9

Types	 10
Bundles	 10
Fields	 11
Drupal core entity structure	 11

Powerful entity use cases	 12
User profiles	 12
Internationalization	 13
Commerce products	 13

Our use case	 13
Summary	 14

Chapter 2: Developing with Entity Metadata Wrappers	 15
Introducing entity metadata wrappers	 15
Creating an entity metadata wrapper object	 16
Standard entity properties	 17
Entity introspection	 18
Using an entity metadata wrapper	 18

Create	 18
Drush commands	 18
Code snippet	 19

Retrieve	 19
Drush commands	 19
Code snippet	 19

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Update	 21
Drush commands	 21
Code snippet	 21

Delete	 21
Drush commands	 21
Code snippet	 21

Safely using text property values	 22
Self-imposed limitation of entity programming	 22
References	 22
A note about EntityFieldQuery	 23
Summary	 23

Chapter 3: Developing with Non-fieldable Entities	 25
What are non-fieldable entities?	 25
File entities	 26
Vocabulary entities	 30
Recipe site vocabularies	 31
Summary	 33

Chapter 4: Developing with Fieldable Entities	 35
What are fieldable entities?	 35
Node entities	 36
Comment entities	 39
Term entities	 40
Summary	 46

Chapter 5: Developing with Fields	 47
Field types	 47
Single-value and multi-value fields	 48
Structure fields	 50

Field type-specific code	 51
File and image fields	 52
Link fields	 52
Datetime fields	 53
Putting it all together	 54

Converting the recipe content type to use fields	 55
Creating fields	 56
Exporting fields to a feature	 58
Copying the code to the recipe module	 60
Tweaking recipe.module and recipe.info	 61
Upgrading recipe module	 63

Summary	 68

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 6: Developing with Field Collections	 69
Before Drupal 7	 69
Creating a field collection field	 71
Field collection entities	 74
Adding a field collection to a node	 76
Attaching a field collection to a content type	 77

Exporting field collection and fields	 78
Copying the code to the recipe module	 80
Tweaking recipe.module	 80
Updating code is unnecessary	 82

Summary	 82
Chapter 7: Expose Local Entities	 83

Motivation for exposing entities	 83
Fast track your data exposure	 84
Allow fields on your entity	 85
Give it multiple bundles	 86
Administration interface and exportability	 87

Storing bundle information	 87
Exposing bundle information and handling access rights	 91
Adding the support code	 94

Summary	 100
Chapter 8: Expose Remote Entities	 101

Introducing the Remote Entity API	 101
Requirements for exposing remote entities	 102
Implementing remote entity exposure	 103

Database schema	 104
Connection code	 104
Remote query code	 105
Entity exposure code	 105
Entity metadata API integration	 107
Import and administration code	 108

Running	 108
Adding write support	 109
Customization for your use case	 110
Summary	 110

Index	 111

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Drupal 7 brought about many innovations for developers, themers, and site
builders. Entities are, without a doubt, the most fundamental innovation, and
their birth produced the biggest impact in the way in which Drupal sites are
built and modules are developed. The entity paradigm made available a powerful
and unified API, making it easy to build solutions with minimal code catering for
specific data structures.

This book peels the onion layers away, showing you how to Create, Retrieve, Update,
and Delete (CRUD) entities in general; how to use entity metadata wrappers; how to
utilize common entity types such as Nodes, Comments and Field Collections; and how
to expose local or remote data to Drupal and contributed modules. Each chapter offers,
you some code examples showing you how to do things with each of the entity types.
All that without making your eyes water.

What this book covers
Chapter 1, Understanding Entities, differentiates entity and solution modules, and
introduces entity types, bundles, and fields, followed by entity structures and some
use cases where the entity paradigm is powerful.

Chapter 2, Developing with Entity Metadata Wrappers, delves into development using
entity metadata wrappers for safe CRUD operations and entity introspection.

Chapter 3, Developing with Non-fieldable Entities, unveils non-fieldable entities and how
they can be manipulated in code. File and Vocabulary entity types implemented in
core are dissected and used as examples.

Chapter 4, Developing with Fieldable Entities, covers fieldable entities and how they can
be manipulated in code. Core-implemented Node, Comment, and Term entity types
are pulled apart and used as examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 5, Developing with Fields, discusses the differences between single-value
and multi-value fields, explains structure fields, and then uncloaks the properties
of common field types: date, file, image, link, number, text, and term reference.
Practical examples also covered are: how to access fields of an entity, how to add
fields to an entity, and how to migrate data into fields.

Chapter 6, Developing with Field Collections, introduces field collections and how they
are programmatically manipulated, declared, and created.

Chapter 7, Expose Local Entities, discloses how easy it is to expose a database table
as either a non-fieldable or fieldable entity, and then explains how to enable
exporting, importing, and cloning of bundle configurations.

Chapter 8, Expose Remote Entities, covers the requirements of exposing remote data as
entities. It also describes how to expose batch-imported remote data as entities in our
example site.

What you need for this book
To complete the practical exercises in this book, you will need to have the following
in your environment:

•	 A Web server capable of running Drupal 7, with PHP 5.2.4 or higher installed
•	 A MySQL database server that is accessible from the web server
•	 System-wide installation of Drush 5.x

You can avoid tweaking the Drupal settings if you use a MySQL server on your web
server (localhost) and have a MySQL user account with the following credentials:

•	 Username: drupal_entities
•	 Password: W43wSu4Ym44K

Who this book is for
This book is aimed at readers with PHP development experience, along with
some experience installing websites on a server. Familiarity with Drush and
GIT is also recommended.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Using the example code
Example code for this book contains a GIT repository, and chapters 2 to 8 each have
a branch. The branches are named chapter_02 through to chapter_08. There is a
branch named complete, which contains the completed code that you would achieve
after finishing all practical examples.

At the beginning of each chapter you need to check out a branch by using the
following command:

$ git checkout chapter_02

It's a good idea to configure a different site for each chapter on your web server.
Otherwise, you can commit changes you make to the code before checking out
another chapter branch.

Refer to the readme file supplied with the code for information about installing
the example code.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

$options = array('sanitize' => TRUE);
$output1 = $entity->myproperty->value($options);
$options = array('decode' => TRUE);
$output2 = $entity->myproperty->value($options);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$output = 'First property: ';
$output .= $wrapper->property[0]->value();
foreach ($wrapper->property as $vwrapper) {
 $output .= $vwrapper->value();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Any command-line input or output is written as follows:

$ drush eu ingredient 1 Salt

$ drush help eu

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You'll also
see that all properties are read-only on the wrapper. This is denoted by the R in the
Type column".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Entities
Developing Drupal code has always been interesting and fun because the APIs
change a lot between Drupal releases. Other CMS platforms have adopted a more
static API approach, resulting in a much slower innovations. One such Drupal
innovation has been the entity paradigm that simplified data manipulation. This
enabled developers to build more powerful solutions and liberate their brains to
remember more important things such as anniversaries and birthdays. Exposing
custom data as entities can be done with simpler code and less repetition. Those
entities can then be utilized by all modules with very little developer effort. The
result: "Good Codes!"

In this chapter we will cover the following topics:

•	 Introduce entities and how the entity paradigm makes code more flexible,
useful, simple, and robust

•	 Understand the difference between entity modules and solution modules
•	 Introduce entity types, bundles, and fields
•	 Learn the structure of entities exposed by Drupal core
•	 Highlight some use cases where the entity paradigm is powerful
•	 Introduce the use case that will be implemented in this book

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Entities

[8]

Introducing entities
Let's start off by clearing up something very confusing. The word entity can be used
to describe different perspectives of Drupal data and code. For clarity, we will use
the following perspectives for this introduction:

•	 Structure: This is the description of the names, types, and sizes of data
inside a container

•	 Interface: This is the channel through which code interacts with data inside
a container

•	 Box: This is the structure and interface wrapped together so they can be
manipulated, stored, or transferred as a single unit

Plastic food containers in our homes come in all shapes and sizes; with or without lids,
clear or opaque. This is the container's interface perspective. Through this interface,
we can take content out, put content in, and know what type of content it has.

Food containers can contain anything, and you can use spacers to separate the
content in interesting ways. This is the structure perspective.

In our homes, these containers are all dealt with in a similar way or; in other words,
a unified way. We can take them off the shelf, put them on the shelf, and even cook
the content in a microwave (with the lid ajar of course). This is the box perspective.

Some of Drupal's boxes were, and still are, nodes, comments, users, terms, and
vocabularies. These boxes were difficult to deal with collectively in a unified way,
because their properties and methods differed a lot. In much the same way, food
containers are not interchangeable. For example, some are microwave safe, while
others are not. There aren't enough variations in food containers to cause difficulties,
but there are in Drupal boxes. In the past, Drupal boxes had varying structures and
many interfaces, making interchangeability impossible. The result: spaghetti code.
The good news is that Drupal developers could do something about this.

These clever folks realized that making the interface the same, regardless of the
structure, means that every box can be treated the same. They could end the
spaghetti madness by creating an abstraction, offering a unified interface for
Drupal data! This revelation resulted in an explosion of innovations, and Drupal
entities were born.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Some of these clever folks had even predicted the power of such an abstraction.
A unified data interface simplifies code and makes more data available for
manipulation. In addition to this, new data structures exposed to Drupal could
be manipulated by existing code with little or no additional code. In other words,
developers can create a new entity and the many Drupal features leveraging entities
will access the new entity in full, with very little effort.

Last, but definitely not least, a unified interface reduces bugs and improves
maintainability because less specialized code is used.

Entity and solution modules
The Drupal community uses the following two categories for modules dealing
with entities:

•	 Entity modules: These expose and manage the structure and interface by
supplying any classes needed above and beyond the mechanisms provided
by Drupal core in order to store and manipulate the entity. For example,
comment, file, node, taxonomy, and user modules.

•	 Solution modules: They implement functionality and site features using
entities (boxes) as their data source. For example, rules, search, token, and
views modules.

A module can be both an entity module and a
solution module at the same time!

Introducing entity types, bundles, and
fields
The three conceptual components of an entity are as follows:

•	 Types
•	 Bundles
•	 Fields

Let's look at these components in detail, from a solution module developer's
perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Entities

[10]

Types
Semantically, an entity type defines the name, base structure, and interface of an
entity. The entity type is tied to a table of data from which fields automatically
become the entity properties.

In code, an entity type simply consists of metadata and classes. Drupal core uses
its classes and the entity type metadata to expose entity data to code that uses
a well-known structure-independent interface. This enables modules to Create
Retrieve Update Delete (CRUD) and query different entity structures by using
the same code.

Because the interface is consistent between entity types, it's quite safe to say that only
the structure varies between them.

Bundles
The next rung up the conceptual ladder is a bundle, which is simply a name. A bundle
can be considered an entity subtype and, when paired with the entity type, becomes
an entity instance. It is possible for an entity type to only have one bundle, and this is
used when a developer does not need more than one instance.

One real-world analogy would be to use vegetable as the entity type and then define
aboveground and underground as the subtypes. Both subtypes have dimensions and
other common properties, and those are defined in the vegetable entity type.

You might be wondering why the subtypes chosen are weird and not something like
broccoli and spinach. The reason is because subtypes must be structurally different
in order to warrant the division. Structurally similar things don't need a subtype.
We had to recognize a distinguishing characteristic that makes the properties of each
entity different. Underground vegetables have roots coming out of them, so only they
will have properties related to roots.

Similarly, Drupal has an entity type named node and two example subtypes are blog
posts and events. Both bundles have an author and a creation date, but we probably
want an image attached to the blog post and a start timestamp attached to the event.
The common properties are part of the entity type; the uncommon properties are
attached to bundles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Fields
Drupal 7 fields came from Drupal 6 Content Construction Kit (CCK) fields.
Even though CCK fields did cause a Darwin, inspired module extermination,
they benefited the Drupal landscape by paving the way to entities. CCK fields
made it possible to attach use case-specific fields to content types (nodes) without
writing a single line of code. A site builder could attach a field by using the site's
administration UI. In Drupal 7, field implementation was moved to Drupal core,
and fields now attach to bundles of all entity types not just nodes.

As already mentioned, an entity's structure is based on the properties of the entity
type. The structure is then extended by its fields. Fields are attached to an entity
bundle by a developer in code or by a duly authorized user using the Manage fields
user interface.

Entities can either accept fields or not accept them. This is known, in Drupal
parlance, as fieldability or, in other words, the ability to attach fields. Entities are
considered as either fieldable or non-fieldable. An entity's fieldability is defined in
the entity type declaration.

Fields are attached to bundles and not to entity types. This is
an important distinction that may save design or debugging
time. Another important note is that fieldability can not be
different for two bundles of the same entity type.

More details about fields is given in Chapter 5, Developing with Fields.

Drupal core entity structure
Entities exposed by Drupal core are comment, file, node, term, user, and
vocabulary. Their structure is shown in the following table. Although in these
entities fieldability does correlate with multiple bundle support, it is possible to
have a fieldable single-bundle entity.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Entities

[12]

The following table shows Drupal core entity types, their fieldability, and whether
they support multiple bundles:

Entity type Fieldability Multiple bundles

Comment Y Y
File N N
Node Y Y
Term Y Y
User Y Y
Vocabulary N N

Powerful entity use cases
The entity paradigm has allowed developers to expose their custom data to Drupal
and utilize the full power of many Drupal solution modules, with minimal effort.
The following are some use cases that have transformed immensely since entities
were born:

•	 User profiles
•	 Internationalization
•	 Commerce products

User profiles
Drupal core, before Drupal 7, did not associate users with nodes. Site builders had
to use either the core profile module or a contributed "profile-as-a-node" module,
which tied users to nodes. All of these user profile modules had idiosyncrasies,
limiting their scope or flexibility. To make any "profile-as-a-node" module useful
to site builders, each had to implement their own rules, search, token, and views
(solution module) integration, resulting in too much repetition.

Thanks to the fieldability of Drupal 7 user entities, a user account can be tied to
any entity by a site builder (no code!) using an entity reference field. Through this
reference field, solution modules will automatically be able to traverse from the
user entity to the other entity regardless of the entity types. Because a single entity
reference field can have multiple values, the site builder can create multiple profile
types for different user facets. Solution modules will handle them all automatically!
Developers exposing custom data to Drupal using entities will get all of this for free
or with very little code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Internationalization
At the time of writing, it would be terribly naïve for anyone to say that Drupal's
internationalization (i18n) features are mature. The lack of innovation in this
area can be largely attributed to the lack of a unified interface. The birth of
entities opened the floodgates, and the development of i18n flourished in the
Drupal meadows.

Adding an i18n support to a module is now quite trivial. These translation features
are supported by the mainstream solution modules and multilingual Drupal sites
have become much simpler to build.

Internationalization of Drupal 7 entities requires the
entity_translation module. At the time of writing , this
module is in beta. All entity_translation features are
slated to become part of core in Drupal 8!

Commerce products
Drupal Commerce was custom built for Drupal 7 using entities. Older code combined
the visual representation of a product (description, images, and so on) and the product
details such as Stock-Keeping Unit (SKU) and price. This made it difficult to support
product combinations (multiple products per line item) and product variations (for
example, size and color). The cart and checkout modules were custom forms, and
customizing them required many lines of hook implementations and theme overrides.
Other difficult features were taxes, discounts, and currencies. Along came bucket
loads of contributed modules trying to support every possible feature combination,
plus custom glue code to fill the gaps. The result: spaghetti!

Developers introduced new entities (products, orders, line items, and payments)
along with new fields (price, product reference, and line item reference). Doing so
exposed all data to solution modules and eliminated the many contribution modules
that were previously needed for a basic e-commerce website. Code became simpler
yet it was more flexible!

Our use case
Through out the course of this book, we will gradually update a recipe website,
starting with a basic installation of Drupal 7 preconfigured with modules and content.
For the recipe features, we will use a contribution module named recipe. The module
is written as a node module—the design pattern in use before CCK even existed!
In each chapter, we will gradually bring it closer to being a fully-fledged Drupal 7
module while we learn about programming Drupal entities using "Good Codes!"

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Entities

[14]

Summary
In this chapter, we were introduced to entities, entity types, bundles, and fields with
entity structure dissected. The entity and solution module categories were described,
and we discovered how the entity paradigm makes code more flexible, useful, simple,
and robust. Some powerful use cases were examined in before-and-after styles, to
emphasize how powerful the entity paradigm is. Finally, you were introduced to the
use case we will build as you progress through this book: a recipe website.

Next up, we will cook our first Drupal entity dish without burning it, because we
have a super special spatula: entity metadata wrappers.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Entity
Metadata Wrappers

Now that you've read the previous chapter, you know everything about entities,
right? Absolutely! Now it's time to play with them by using some well designed
object classes: entity metadata wrappers.

In this chapter we will cover the following topics:

•	 What entity metadata wrappers are
•	 Instantiate an entity metadata wrapper for an entity
•	 CRUD an entity
•	 Entity introspection
•	 Commonly used wrapper methods
•	 Safely using text property values

Introducing entity metadata wrappers
Entity metadata wrappers, or wrappers for brevity, are PHP wrapper classes
for simplifying code that deals with entities. They abstract structure so that a
developer can write code in a generic way when accessing entities and their
properties. Wrappers also implement PHP iterator interfaces, making it easy to
loop through all properties of an entity or all values of a multiple value property.

The magic of wrappers is in their use of the following three classes:

•	 EntityStructureWrapper

•	 EntityListWrapper

•	 EntityValueWrapper

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Entity Metadata Wrappers

[16]

The first has a subclass, EntityDrupalWrapper, and is the entity structure object that
you'll deal with the most. Entity property values are either data, an array of values,
or an array of entities. The EntityListWrapper class wraps an array of values or
entities. As a result, generic code must inspect the value type before doing anything
with a value, in order to prevent exceptions from being thrown.

Creating an entity metadata wrapper
object
Let's take a look at two hypothetical entities that expose data from the following two
database tables:

•	 ingredient

•	 recipe_ingredient

The ingredient table has two fields: iid and name. The recipe_ingredient table
has four fields: riid, iid, qty, and qty_unit. The schema would be as follows:

ingredient
iid
name

bigint
varchar

recipe_ingredient
riid
rid

bigint
bigint

iid

qty_unit
qty

bigint

varchar
decimal

Schema for ingredient and recipe_ingredient tables

To load and wrap an ingredient entity with an iid of 1 and, we would use the
following line of code:

$wrapper = entity_metadata_wrapper('ingredient', 1);

To load and wrap a recipe_ingredient entity with an riid of 1, we would use this
line of code:

$wrapper = entity_metadata_wrapper('recipe_ingredient', 1);

Now that we have a wrapper, we can access the standard entity properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

Standard entity properties
The first argument of the entity_metadata_wrapper function is the entity type,
and the second argument is the entity identifier, which is the value of the entity's
identifying property. Note, that it is not necessary to supply the bundle, as
identifiers are properties of the entity type.

When an entity is exposed to Drupal, the developer selects one of the database
fields to be the entity's identifying property and another field to be the entity's label
property. In our previous hypothetical example, a developer would declare iid as
the identifying property and name as the label property of the ingredient entity.
These two abstract properties, combined with the type property, are essential for
making our code apply to multiple data structures that have different identifier fields.

Notice how the phrase "type property" does not format the word "property"? That
is not a typographical error. It is indicating to you that type is in fact the name of
the property storing the entity's type. The other two, identifying property and label
property are metadata in the entity declaration. The metadata is used by code to get
the correct name for the properties on each entity in which the identifier and label
are stored. To illustrate this, consider the following code snippet:

$info = entity_get_info($entity_type);
$key = isset($info['entity keys']['name'])
 ? $info['entity keys']['name'] : $info['entity keys']['id'];
return isset($entity->$key) ? $entity->$key : NULL;

Shown here is a snippet of the entity_id() function in the entity module. As you
can see, the entity information is retrieved at the first highlight, then the identifying
property name is retrieved from that information at the second highlight. That name
is then used to retrieve the identifier from the entity.

Note that it's possible to use a non-integer identifier, so
remember to take that into account for any generic code.

The label property can either be a database field name or a hook. The entity exposing
developer can declare a hook that generates a label for their entity when the label
is more complicated, such as what we would need for recipe_ingredient. For
that, we would need to combine the qty, qty_unit, and the name properties of the
referenced ingredient.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Entity Metadata Wrappers

[18]

Entity introspection
In order to see the properties that an entity has, you can call the getPropertyInfo()
method on the entity wrapper. This may save you time when debugging. You can
have a look by sending it to devel module's dpm() function or var_dump:

dpm($wrapper->getPropertyInfo());
var_dump($wrapper->getPropertyInfo());

Using an entity metadata wrapper
The standard operations for entities are CRUD: create, retrieve, update, and delete.
Let's look at each of these operations in some example code. The code is part of the
pde module's Drush file: sites/all/modules/pde/pde.drush.inc.

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com .
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Each CRUD operation is implemented in a Drush command, and the relevant code is
given in the following subsections. Before each code example, there are two example
command lines. The first shows you how to execute the Drush command for the
operation.; the second is the help command.

Create
Creation of entities is implemented in the drush_pde_entity_create function.

Drush commands
The following examples show the usage of the entity-create (ec) Drush command
and how to obtain help documentation for the command:

$ drush ec ingredient '{"name": "Salt, pickling"}'

$ drush help ec

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

Code snippet
$entity = entity_create($type, $data);
// Can call $entity->save() here or wrap to play and save
$wrapper = entity_metadata_wrapper($type, $entity);
$wrapper->save();

In the highlighted lines we create an entity, wrap it, and then save it. The first line
uses entity_create, to which we pass the entity type and an associative array
having property names as keys and their values. The function returns an object that
has Entity as its base class. The save() method does all the hard work of storing
our entity in the database. No more calls to db_insert are needed!

Whether you use the save() method on the wrapper or on the Entity object
really depends on what you need to do before and after the save() method call.
For example, if you need to plug values into fields before you save the entity, it's
handy to use a wrapper.

Retrieve
The retrieving (reading) of entities is implemented in the drush_pde_print_
entity() function.

Drush commands
The following examples show the usage of the entity-read (er) Drush command
and how to obtain help documentation for the command.

$ drush er ingredient 1
$ drush help er

Code snippet
$header = ' Entity (' . $wrapper->type();
$header .= ') - ID# '. $wrapper->getIdentifier().':';
// equivalents: $wrapper->value()->entityType()
// $wrapper->value()->identifier()

$rows = array();
foreach ($wrapper as $pkey => $property) {
 // $wrapper->$pkey === $property
 if (!($property instanceof EntityValueWrapper)) {
 $rows[$pkey] = $property->raw()

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Entity Metadata Wrappers

[20]

 . ' (' . $property->label() . ')';
 }
 else {
 $rows[$pkey] = $property->value();
 }
}

On the first highlighted line, we call the type() method of the wrapper, which
returns the wrapped entity's type. The wrapped Entity object is returned by the
value() method of the wrapper. Using wrappers gives us the wrapper benefits,
and we can use the entity object directly!

The second highlighted line calls the getIdentifier() method of the wrapper.
This is the way in which you retrieve the entity's ID without knowing the identifying
property name. We'll discuss more about the identifying property of an entity in
a moment.

Thanks to our wrapper object implementing the IteratorAggregate interface, we
are able to use a foreach statement to iterate through all of the entity properties. Of
course, it is also possible to access a single property by using its key. For example,
to access the name property of our hypothetical ingredient entity, we would use
$wrapper->name.

The last three highlights are the raw(), label(), and value() method calls.
The distinction between these is very important, and is as follows:

•	 raw(): This returns the property's value straight from the database.
•	 label(): This returns value of an entity's label property. For example, name.
•	 value(): This returns a property's wrapped data: either a value or another

wrapper.

Finally, the highlighted raw() and value() methods retrieve the property values
for us. These methods are interchangeable when simple entities are used, as there's
no difference between the storage value and property value. However, for complex
properties such as dates, there is a difference. Therefore, as a rule of thumb, always
use the value() method unless you absolutely need to retrieve the storage value.
The example code is using the raw() method only so we that can explore it, and all
remaining examples in this book will stick to the rule of thumb. I promise!

•	 Storage value: This is the value of a property in the
underlying storage media. for example, database.

•	 Property value: This is the value of a property at the entity
level after the value is converted from its storage value to
something more pleasing. For example, date formatting of
a Unix timestamp.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Multi-valued properties need a quick mention here. Reading these is quite
straightforward, as they are accessible as an array. You can use Array notation to get
an element, and use a foreach to loop through them! The following is a hypothetical
code snippet to illustrate this:

$output = 'First property: ';
$output .= $wrapper->property[0]->value();
foreach ($wrapper->property as $vwrapper) {
 $output .= $vwrapper->value();
}

Update
The updating of entities is implemented in the drush_pde_entity_update() function.

Drush commands
The following examples show the usage of the entity-update (eu) Drush command
and how to obtain help documentation for the command:

$ drush eu ingredient 1 Salt

$ drush help eu

Code snippet
$wrapper->$pname = $pval;
$wrapper->save();

Updating an entity is very easy for simple properties, as can be seen in the preceding
two highlighted lines—an assignment followed by a call to the wrapper's save()
method. Complex properties can be trickier, and these are covered in the relevant
chapters later.

Delete
The deletion of entities is implemented in the drush_pde_entity_delete() function.

Drush commands
The following examples show the usage of the entity-delete (ed) Drush command
and how to obtain help documentation for the command:

$ drush ed ingredient 1

$ drush help ed

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Entity Metadata Wrappers

[22]

Code snippet
$wrapper->delete();

A single call to the wrapper's delete() method is all that's needed to zap an
entity away.

Safely using text property values
Calls to the value() method on the wrapped text property values can pass an array
of options for processing the value before it's returned.

$options = array('sanitize' => TRUE);
$output1 = $entity->myproperty->value($options);
$options = array('decode' => TRUE);
$output2 = $entity->myproperty->value($options);

In the preceding example, myproperty is a text property. Only one of the two
options, sanitize and decode, should be used at at time. If you set both to TRUE,
the value will be sanitize. Both are FALSE by default.

When sanitize is set to TRUE, the text is passed through check_plain, which
ensures that the text is ready to be displayed in HTML. It does so by converting
characters such as angled brackets to HTML entities (nothing to do with Drupal
entities). So, a less than symbol > becomes <. Use the sanitize option if the
value will be fed directly into HTML output.

Setting the decode option is necessary when the value is HTML or PHP. This option
will decode the string , by removing all HTML and PHP tags, and will then convert
all HTML entities into their plaintext equivalents.

Self-imposed limitation of entity
programming
There is one very important thing to mentally note down about entity programming.
It is intended only for low-level data manipulation. Your humble author recommends
that you do not use entity code for rendering content to a browser, because your code
will not play well with modules or themes. If you wish to modify the rendering of
some content, use Drupal's theme layer. The use of entity code within the theme layer
is safe, that provided you put the code within the theme hooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

References
•	 The entity_metadata_wrapper() function at http://drupalcontrib.

org/api/drupal/contributions!entity!entity.module/function/
entity_metadata_wrapper/7.

•	 The Entity class API at http://drupalcontrib.org/api/drupal/contrib
utions!entity!includes!entity.inc/class/Entity/7.

•	 The EntityMetadataWrapper class API at http://drupalcontrib.org/
api/drupal/contributions!entity!includes!entity.wrapper.inc/
class/EntityMetadataWrapper/7.

•	 The Entity metadata wrappers from the Drupal handbook at http://
drupal.org/node/1021556.

A note about EntityFieldQuery
The EntityFieldQuery class comes bundled with entity module and is a
wonderful method of searching for queries. Unfortunately, your humble author
accidentally omitted it from this book. To get started, take a look at the Drupal
Handbook page at https://drupal.org/node/1343708.

Summary
In this chapter we discovered how easy entity coding can be, thanks to all of the
cleverly designed wrapper classes. We now know what entity metadata wrappers
are, how to CRUD entities by using the wrappers, and how to ensure that the data
coming from entities is safe to use. Next, we will look at and play with non-fieldable
entities in Drupal core!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Non-fieldable
Entities

Up to this point, we have spent time learning about entities in general by using
hypothetical entities. It is now time to play with some of the entity structures
exposed by Drupal core. In this chapter we will cover the following:

•	 What non-fieldable entities are
•	 File entities
•	 Vocabulary entities
•	 Programmatically creating a file and a vocabulary
•	 Programmatically modifying a file and a vocabulary

What are non-fieldable entities?
So far in this book, we have only brushed on non-fieldable entities, so a little more
detail is needed before we can appreciate them for what they are: structurally restricted
data containers.

Wait a second! Aren't entities meant to be flexible so that we can extend them to
our will?! Aren't fields one of the three necessary ingredients of a delicious entity
sandwich?! Well, yes and no. Yes, we do want entities to be flexible and allow us to
bend them to suit different use cases. However, some entities have no known use
cases in which they should have fields, and some entities are better left non-fieldable
until their full scope and supporting code are finalized. In Drupal 7 core, there are
two such entities: vocabulary and file.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Non-fieldable Entities

[26]

While you may be able to think of a use case in which, say, vocabulary entities would
benefit from having fields, there just wasn't enough need to include support for that
in Drupal 7. Keeping fields off these entities simplified the transition to the entity
paradigm and reduced the time needed to make it all happen. That said, there is
a contributed module named file_entity, working towards making file entities
fieldable, among other features. This functionality, or part of it, will no doubt work
its way into Drupal core eventually. At the time of writing, the earliest will be Drupal
9 as no developers have taken on the project.

For now, let's take a look at these two non-fieldable entity types in detail.

To get a quick look at an entity type's property information,
you can use the dump-entity-properties (dep) Drush
command in the pde module from the downloadable code.

File entities
Drupal 7 introduced some rather important changes for files. First and foremost, they
became entities, although they are not fully-fledged entities. This is most likely due
to how different they are to content. For example, at the time of writing, file entities
don't have any write support through wrappers. All changes must be done using
the entity object itself or the File API. The latter is the best option, as the File API
is quite simple to use. The wrapper save() method still works if you truly wish to
bypass the File API.

In your applications, you will more often read values from file entities than you will
write them. For reading, we should use wrappers or entity properties. The following
table shows the wrapper and entity properties of file entities in Drupal 7:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[27]

Wrapper
property

Type (Read/
Write)

Description Entity
property

fid integer (R) File ID
name string (R) Name of the file filename

mime string (R) MIME type of the file filemime

size integer (R) Size of the file in kilobytes filesize

url string (R) Web-accessible URL of the file uri

timestamp date/integer
(R**)

Time of the most recent file update

owner user/integer
(R)

User who originally uploaded the file uid

integer (R) Status: temporary (0) or permanent (1) status

The timestamp property can only be set by code
directly changing the database record

Note that some of the wrapper property names differ from the entity property
names (database field names). For those that differ, the entity property name has
been placed in the right-hand side column. You will also notice that the values can
be different between the wrapper property and the entity property; so can the type.
For example, the owner wrapper property will be a user entity wrapper whereas
the uid entity property is just a numeric user ID.

You'll also see that all properties are read-only on the wrapper. This is denoted by
the R in the Type column. The timestamp field is also a special field because none of
the API functions or wrapper code can alter the value that is stored in it. A developer
must directly change the database record to make any change to this field. Finally,
you'll notice the status property is totally missing from the wrapper.

Another concept introduced in Drupal 7 is the distinction between managed and
unmanaged files. Managed files are known by Drupal and these are the entities that
are most often used. Unmanaged files are useful in use cases where you want to do
something outside of Drupal's API reach.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Non-fieldable Entities

[28]

Creating a file entity by using the File API is typically done by using the file_save_
data() function. The following code snippet comes from the system_retrieve_
file() API function.

$local = $managed
 ? file_save_data($result->data, $path, $replace)
 : file_unmanaged_save_data($result->data, $path, $replace);

Notice here that this function supports the creation of both managed and
unmanaged files. Let's take a look inside file_save_data.

if ($uri = file_unmanaged_save_data($data, $destination, $replace)) {
 // Create a file object.
 $file = new stdClass();
 $file->fid = NULL;
 $file->uri = $uri;
 $file->filename = drupal_basename($uri);
 $file->filemime = file_get_mimetype($file->uri);
 $file->uid = $user->uid;
 $file->status = FILE_STATUS_PERMANENT;
 // If we are replacing an existing file re-use its database
record.
 if ($replace == FILE_EXISTS_REPLACE) {
 $existing_files = file_load_multiple(array(), array('uri' =>
$uri));
 if (count($existing_files)) {
 $existing = reset($existing_files);
 $file->fid = $existing->fid;
 $file->filename = $existing->filename;
 }
 }
 // If we are renaming around an existing file (rather than a
directory),
 // use its basename for the filename.
 elseif ($replace == FILE_EXISTS_RENAME && is_file($destination)) {
 $file->filename = drupal_basename($destination);
 }

 return file_save($file);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[29]

The first highlight through to the second highlight shows the manual way of
creating file entities. There is no use of entity_create. To create a file named
helloworld.txt by using the entity, use the following code:

global $user;

$filename = 'helloworld.txt';
$uri = 'public://'.$filename;
$content = "Hello, world!\nI am Programming Drupal Entities!\n";

$uri = file_unmanaged_save_data($content, $uri, FILE_EXISTS_REPLACE);
$data = array(
 'fid' => NULL,
 'uri' => $uri,
 'filename' => drupal_basename($uri),
 'filemime' => file_get_mimetype($uri),
 'uid' => $user->uid,
 'status' => FILE_STATUS_PERMANENT,
);
$entity = entity_create('file', $data);
$wrapper = entity_metadata_wrapper('file', $entity);
$wrapper->save();

The preceding code provides a useful illustration but it is not really worth using
anymore, as you can achieve much more with less code. In practice you would do
the following instead:

$filename = 'helloworld.txt';
$uri = 'public://'.$filename;
$content = "Hello, world!\nI am Programming Drupal Entities!\n";
$file = file_save_data($content, $uri, FILE_EXISTS_REPLACE);
$wrapper = entity_metadata_wrapper('file', $file);

As you can see, we get a wrapper object in less lines by using the File API.

Seeing that updating status is impossible using wrappers, we must directly use
the entity. Let's pretend that we want to flag the file for removal on a later cron
run. This is done by setting the file entity's status to FILE_STATUS_TEMPORARY.
The code would be as follows:

$wrapper = entity_metadata_wrapper('file', $fid);
$wrapper->value()->status = FILE_STATUS_TEMPORARY;
$wrapper->save();

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Non-fieldable Entities

[30]

Alternatively, we can use the entity object itself:

$entity = entity_load_unchanged('file', $fid);
$entity->status = FILE_STATUS_TEMPORARY;
$entity->save();

As a quick reminder, to delete an entity using a wrapper, you can use the
following code:

$wrapper->delete();

Calling this on a file entity wrapper also deletes the file on disk.

Vocabulary entities
Vocabulary entities are a little strange. Developers opted to use the type name
taxonomy_vocabulary instead of just vocabulary when they implemented the entity
type in core. This is worth remembering so you don't get tripped up. The following
table shows the properties of vocabulary entities in Drupal 7:

Wrapper
property

Type (Read/
Write)

Description Entity property

vid integer (R) Vocabulary ID
name string (R/W) Name
machine_name string (R/W) Machine name
description string (R/W) Description
term_count integer (R) Number of terms in the

vocabulary
N/A

N/A integer Hierarchy type: disabled (0),
single (1), or multiple (2)

hierarchy

N/A string Module that created the
vocabulary

module

N/A integer Weight of this vocabulary entity
versus other vocabulary entities

weight

For most cases, the hierarchy property is best left untouched. The taxonomy
module will automatically adjust this property to match how you organize terms
using the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[31]

To create a vocabulary named cuisine we would use the following code:

$data = array(
 'name' => 'Cuisine',
 'machine_name' => 'cuisine',
 'description' => 'Contains terms representing different cuisines.',
);
$entity = entity_create('taxonomy_vocabulary', $data);
$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $entity);
$wrapper->save();

The last three lines are quite ok if you plan on using the wrapper for other things.
If you don't need to use a wrapper, these lines can be shrunk to the following line:

$status = taxonomy_vocabulary_save((object) $data);

API wins again! Let's put this into action in our recipe module overhaul.

Recipe site vocabularies
In its 7.0-1.x implementation, the recipe contribution module has no vocabularies
by default. Site builders can easily add their own vocabularies to match their use
case. However, it would be quite cool if the recipe module created two vocabularies
out of the box: cuisine and difficulty.

We will now add code to the recipe module's install file. The code will create these
vocabularies for new and existing sites. Open the recipe.install file (sites/all/
modules/customized/recipe/recipe.install) and add the following code to the
bottom of the file:

/**
 * Implements hook_install().
 */
function recipe_install() {
 recipe_install_vocabularies();
}

/**
 * Install default vocabularies introduced in 7.x-2.x.
 *
 * @return
 * FALSE if the operation was successful otherwise the vocabulary
 * machine_name that failed.
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Non-fieldable Entities

[32]

function recipe_install_vocabularies() {
 $vocabularies = array(
 array(
 'name' => 'Cuisine',
 'machine_name' => 'cuisine',
 'description' =>
 'Contains terms representing different cuisines.',
),
 array(
 'name' => 'Difficulty',
 'machine_name' => 'difficulty',
 'description' =>
 'Contains terms representing difficulty levels.',
),
);
 foreach ($vocabularies as $vdata) {
 // Make sure we're not overwriting existing vocabularies
 $v = taxonomy_vocabulary_machine_name_load($vdata['machine_
name']);
 if (!$v
 && taxonomy_vocabulary_save((object) $vdata) === FALSE) {
 // We got a problem
 return $vdata['machine_name'];
 }
 }

 return FALSE;
}

/**
 * Install default vocabularies introduced in 7.x-2.x.
 */
function recipe_update_7200(&$sandbox) {
 if ($machine_name = recipe_install_vocabularies()) {
 throw new DrupalUpdateException('Error occurred when attempting to
create vocabulary: '.$machine_name);
 }
}

The code we used was simply an install hook, a handler function, and an update
hook. The highlighted line creates a vocabulary. Note that we used neither the entity
code nor the wrapper code, just the good old core API. To see what you've done,
scoot into your website document root using your shell and update the site database
using Drush:
$ drush updatedb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

Surf over to admin/structure/taxonomy and you'll see the new vocabularies. The
properties of vocabulary entities in Drupal 7 are shown in the following screenshot:

There may be times when you want to load a vocabulary by using its
machine name. To do so, you can call the taxonomy_vocabulary_
machine_name_load() function, and then feed the returned value
into the entity_metadata_wrapper() function.

Updating a vocabulary can be done by using the standard CRUD techniques
outlined in Chapter 2, Developing with Entity Metadata Wrappers. A quick reminder;
for updates, use the following code:

$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $vid);
$wrapper->description = 'New description';
$wrapper->save();

For deletion, use the following code:

$wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $vid);
$wrapper->delete();

That wraps up the core-exposed non-fieldable entities and how they can be used
during development.

Summary
In this chapter, we took a look at non-fieldable entities exposed by Drupal core,
learned that they are not fully-fledged entities, and also learned how to develop code
using them. We then added some code to create vocabularies in our first change to
the recipe contributed module.

Next, we will enjoy the aroma from a huge loaf of fieldable entities baking in Drupal
core oven.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable
Entities

Now we can sink our teeth into the main course: fieldable entities. In this chapter
we'll cover the following:

•	 What are fieldable entities
•	 Node entities
•	 Comment entities
•	 Term entities
•	 Programmatically CRUD node, comment, and term entities

Let's get started!

What are fieldable entities?
By now you probably don't need an explanation, but in brief, fieldable entities are
entities to which fields can be attached. In Drupal 7 core they are nodes, comments,
and terms.

The cool thing about these fieldable entities is that they all have bundles, so you can
have more flexibility. For example, consider the comments on different content types
on the same site:

•	 Attach an image field to comments made on support issue posts
•	 Attach a rating field to comments on each product display page

As you can see, the content types are different, yet we are attaching a field to
comments associated with those content types. Bundles! Very cool! Even more
cool is the fact that all of this requires zero code!

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[36]

Lucky for us we still have a job, because there's always some custom requirement.
Let's break out the stand mixer, combine all of these fieldable entities, and bake some
more "Good Codes!"

Node entities
Node entities are the bread and butter of Drupal—the content types around which
sites are built. They are also the most complex core-exposed entities, because they
have a large number of properties. Let's take a look at the wrapper and entity
properties of node entities in Drupal 7:

Wrapper
property

Type (Read/
Write)

Description Entity property

nid integer (R) Node ID
vid integer (R) Revision ID
is_new string (R) Whether or not

the node is new
N/A

type string (R/W) Node type
(bundle name)

title string (R/W) Title
language token (R/W) Language of the

content
url string (R) URL for viewing

node
N/A

edit_url string (R) URL for editing
node

N/A

status integer (R/W) Publishing status
promote Boolean

(R/W)
TRUE to promote
the node to the
front page

sticky Boolean
(R/W)

TRUE to display
the node at the
top of lists

created date/integer
(R/W)

Date the node
was created

changed date/integer
(R)

Date the node
was last changed

author user/integer
(R/W)

Author uid

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[37]

Wrapper
property

Type (Read/
Write)

Description Entity property

source node/integer
(R)

Original-
language source
node

N/A

log text (R/W) Log message for
new revision

N/A

revision Boolean
(R/W)

TRUE if a new
revision is to be
created when the
node is saved

N/A

comment integer (R/W) Comments
allowed: no (0),
closed/read-only
(1), or open (2)

N/A

comment_count integer (R) Total number of
comments posted

N/A

comment_
count_new

integer (R) Number of
comments unseen
by current the
user

N/A

body text_
formatted
(R/W)

Body of the node

body is a special case because it is actually a field

CRUD operations on node entities are the same as on other entities; only the body
field needs thorough attention.

The value of body fields can be retrieved in the same way as for all other properties:

$body_value = $wrapper->body->value();

However, it won't return the content of the body field as we would expect. The body
field has a compound type instead of a scalar type. A property or field with a scalar
type will return a scalar value when you call the value() function. Scalar values are
integers, strings, and things like that. A property or field with a compound type will
return an array when you call the value() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[38]

Sending $body_value in the previous line through print_r would display
the following:

Array
(
 [value] => Body of my node.
 [summary] => Summary of my node.
 [format] => plain_text
 [safe_value] => <p>Body of my node.</p>
 [safe_summary] => <p>Summary of my node.</p>
)

As you can see, there are sub-values within the body field. These are:

•	 value: Raw body content as saved in the database
•	 summary: Raw summary content as saved in the database
•	 format: Input format of the body
•	 safe_value: Computed body content that is HTML safe
•	 safe_summary: Computed summary content that is HTML safe

We could use these values directly by using code similar to this:

$wrapper->body->value->value()

Developers have a choice to use either a raw output or a sanitized (HTML safe)
output. We will refer to this as the processing type. Unfortunately, these outputs are
accessed inconsistently throughout the different field types. For example, one field
type returns raw output for a call to value() whereas a different field type outputs
sanitized output. Wipe the sweat off your brow and take a deep breath. There's a
way around it, and those of you who guess it right get a candy bar.

We can get what we want by calling value() and giving it an option to specify the
processing type. For each processing type the code is as follows:

•	 raw: $wrapper->body->summary->value(array('decode' => TRUE));
•	 sanitized: $wrapper->body->summary->value(array('sanitize' =>

TRUE));

So, that was easy right? Indeed it was. That's all of the tricks necessary if your code
deals with a known entity type or field type. If you need to do anything generic,
write code targeting the field type, as the field type must declare a fixed set of
property names and types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[39]

Don't forget though...programming at the entity-level should have nothing to
do with output rendering. Entity-level code must only deal with low-level data.
Rendering for the browser is always handled by the theme layer!

Comment entities
Drupal provides comment entities to allow users to attach comments to node entities.
Let's take a look at the wrapper and entity properties of comment entities in Drupal 7:

Wrapper
property

Type (Read/Write) Description Entity property

cid integer (R) Comment ID
hostname string (R) IP address of the

posting computer
name string (R/W) Author's name N/A
mail string (R/W) Author's e-mail address
homepage string (R/W) Author's homepage
subject string (R/W) Subject of the comment
url string (R) URL for viewing

comment
N/A

edit_url string (R) URL for editing
comment

N/A

created date/integer
(R/W)

Date comment was
created

parent comment/integer
(R)

Parent comment's ID pid

node node/integer
(R/W)

Node the comment was
posted to

nid

author user/integer
(R/W)

Author uid

status integer (R/W) Published status: no (0)
or yes (1)

comment_
body

text_formatted
(R/W)

Content of the comment Comment body is a
special case because
it is actually a field

The comment_body field is similar to the body field in node entities. The only
difference is that it doesn't have a summary. Refer to the previous section for
information about that.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[40]

Now that we've covered both node and user entities, we can take a look at the entity
reference properties of a comment entity: author and node. When using wrappers,
the author property becomes a user wrapper and the node property becomes a node
wrapper. Via these, you can easily access properties of the author's user account or
the node to which the comment was posted. Some examples are as follows:

$mail = $wrapper->author->mail->value();
$title = $wrapper->node->title->value(array('decode' => TRUE));

The first line in the preceding code returns the author's e-mail address (if they are
a registered user), and the second line returns the node title. Changing the author
is simple:

$wrapper->author = $new_author_uid;
$wrapper->save();

Comments can also be posted by anonymous users. In this case, the value of the uid
field is zero. To check that, do the following:

if ($wrapper->author->raw() === '0') {
 $mail = $wrapper->mail->value(array('decode' => TRUE));
 $name = $wrapper->name->value(array('decode' => TRUE));
}

An important thing to note here is that raw actually returns the user's ID as a
string value. The underlying field is an integer, but the wrapper code turns this
into a string. That is the reason for the quotes and the use of === for the equality
comparison.

Anonymous users will have values in the name and mail properties, as they
don't have a user account to refer to. The code that accesses these properties are
highlighted in the previous code snippet.

Term entities
Similar to the vocabulary entities, terms have a special type name: taxonomy_term.
The properties of taxonomy_term entities are shown in the following table:

Wrapper
property

Type (Read/Write) Description Entity
property

tid integer (R) Term ID
name string (R/W) Name
description string (R/W) Description

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[41]

Wrapper
property

Type (Read/Write) Description Entity
property

weight integer (R/W) Weight; value for the
order of terms

node_count integer (R) Number of nodes tagged
with the term

url uri/string (R) URL N/A
vocabulary taxonomy_vocabulary/

integer (R/W)
Vocabulary vid

parent list<taxonomy_term>
(R/W)

Parent terms N/A

parents_all list<taxonomy_term>
(R/W)

Ancestor terms N/A

Properties of taxonomy_term entities are quite straightforward. Notable properties
are vocabulary, parent, and parents_all.

We can use vocabulary to chain through to the taxonomy_vocabulary entity
containing this term.

$v_name = $wrapper->vocabulary->name->value(array('decode' => TRUE));

Code carefully when using the parent and parents_all properties. The following is
some sample code that assumes a hierarchy of cuisines that looks like the following:

Example cuisine term hierarchy

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[42]

The parents property only contains the direct parents of the term. You read that
correctly—it is a plural. Terms in Drupal can have multiple parents, so a term can
live in two parts of the hierarchy. On the other hand, the parents_all property
contains the entire term path to the vocabulary root including the term itself. To
illustrate this, take a look at the following code and output.

$wrapper = entity_metadata_wrapper('taxonomy_term',$cameroon_tid);
foreach ($wrapper->parent as $pwrapper) {
 print($pwrapper->name->value())."\n";
}
print "\n";
foreach ($wrapper->parents_all as $pwrapper) {
 print($pwrapper->name->value())."\n";
}
/* OUTPUT:
Central African

Cameroon
Central African
African
*/

Our recipe website needs to have some terms installed for the new vocabularies
that we created in the previous chapter. To do so, we amend the code as follows:

/**
 * Implements hook_install().
 */
function recipe_install() {
 recipe_install_vocabularies();
 recipe_install_terms();
}

Add the highlighted line to the recipe_install() function. Next, paste the
following code at the bottom of the file.

/**
 * Installs recipe module's default terms that are read from
 * text files in the module's includes folder.
 */
function recipe_install_terms() {
 foreach (array_keys(recipe_vocabularies()) as $machine_name) {
 $v = taxonomy_vocabulary_machine_name_load($machine_name);
 $wrapper = entity_metadata_wrapper('taxonomy_vocabulary', $v);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[43]

 if ($wrapper->term_count->value() == 0) {
 $path = drupal_get_path('module', 'recipe')
 . '/includes/terms_' . $v->machine_name . '.txt';
 $lines = file($path, FILE_SKIP_EMPTY_LINES);
 recipe_install_term_tree($wrapper, $lines);
 }
 }
}

/**
 * Installs a term tree.
 * @param $vwrapper
 * EntityMetadataWrapper of a taxonomy_vocabulary entity.
 * @param $lines
 * Array of lines from the term text file. The iterator must be set
 * to the line to parse.
 * @param $last
 * Either NULL or the parent term ID.
 * @param $depth
 * Current depth of the tree.
 */
function recipe_install_term_tree($vwrapper, &$lines,
 $last = NULL, $depth = 0) {
 $wrapper = NULL;

 while ($line = current($lines)) {
 $name = trim($line);
 $line_depth = max(strlen($line) - strlen($name) - 1, 0);

 if ($line_depth < $depth) {
 return;
 }
 else if ($line_depth > $depth) {
 $tid = $wrapper ? $wrapper->tid->value() : NULL;
 recipe_install_term_tree($vwrapper, $lines, $tid, $depth+1);
 }
 else {
 $data = array(
 'name' => $name,
 'vid' => $vwrapper->vid->value(),
 'parent' => array($last ? $last : 0),
);

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[44]

 $term = entity_create('taxonomy_term', $data);
 $wrapper
 = entity_metadata_wrapper('taxonomy_term', $term);
 $wrapper->save();
 next($lines);
 }
 }
}

/**
 * Installs terms into default vocabularies.
 */
function recipe_update_7201(&$sandbox) {
 recipe_install_terms();
}

In the preceding code, term names are read from text files that have tab indentation
to symbolize the term hierarchy. A snippet of the terms_cuisine.txt file is shown
as follows:

African
 Central African
 Cameroon
 Congo
 East African
 Burundi
 Kenya
 Maasai
 Tanzania
 Uganda

Each line of the file is analyzed and the creation of a term entity occurs in the
highlighted lines. All that's needed for the correct creation of a term entity is to
specify the name, vid, and parent properties. For terms without a hierarchy, you
need to set the parent term ID to zero. If you don't provide the parent term like this,
you will not get an error, but the term will not be saved properly. In addition, you
can specify a description and a text format, as shown in the following code snippet:

$data = array(
 'name' => $name,
 'vid' => $vid,
 'parent' => array(0),
 'description' => $description,
 'format' => 'plain_text',
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[45]

$term = entity_create('taxonomy_term', $data);
entity_save('taxonomy_term', $term);

You'll notice that entity_save has been used instead. This is an alternative if you
don't need the wrapper.

Once you have added the previous code, open up your terminal and navigate to
your website document root folder and update the site database by using Drush:

$ drush updatedb

Navigate your browser to admin/structure/taxonomy/cuisine and you'll see
the new terms in the Cuisine vocabulary, as shown in the following screenshot:

Cuisine terms after updating the database with the new recipe module updates

That wraps up everything for core-exposed fieldable entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fieldable Entities

[46]

Summary
This chapter delved into the fieldable entities exposed by Drupal 7 core: comment,
node, and term entities. We also added some code to our recipe website that installs
default terms into the Cuisine and Difficulty vocabularies.

In the next chapter, we will whizz up some flexibility with fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields
Now that we've covered the core-exposed entities, we can unveil the most powerful
part of the Drupal entity paradigm: fields. In this chapter we'll look at the following:

•	 Different field types: date, file, image, link, number, text, and
term reference

•	 The difference between multi-value and single-value fields
•	 Structure fields
•	 Programmatically accessing the fields of an entity
•	 Programmatically adding fields to an entity
•	 Programmatically migrating data into fields

Field types
We will look at the most commonly-used field types in Drupal 7: text, numeric,
date, link, file, and image in the following table:

Field type Type name Core/Contributed Module name
date datetime contributed date

date (ISO
format)

date contributed date

date (UNIX
timestamp)

datestamp contributed date

decimal number_decimal core number

file file core file

float number_float core number

image image core image

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[48]

Field type Type name Core/Contributed Module name
Integer number_integer core number

link link contributed link

Long text text_long core text

Long text and
summary

text_with_summary core text

Text text core text

The previous table displays field types, whether it's in core or in a contributed
module, and the name of the Drupal 7 module in which the field is implemented.

You might be wondering why options and list modules are not included in the
previous table. It is because they are not field types, and their responsibility is to
provide widgets on the entity edit forms. Remember to differentiate the widget
you see from the underlying field type when coding.

Single-value and multi-value fields
Fields can either be single-value or multi-value fields. This means that they either
store one value or multiple values. Through wrappers, most single-value fields are
easy to code using techniques already discussed for entity properties. On the other
hand, multi-value fields are arrays and need to be dealt with using either array
notation or through the use of iterators (for example, foreach loops).

When coding with any field, it's important to determine whether it is single-value
or multi-value before proceeding. This could be done by using the following
code snippet:

$field_name = 'field_blah';
if (is_array($wrapper->$field_name->value())) {
 // ... code for a multi-value field
}

However, there are fields, where the previous code will give you a false positive. For
example, the body field of a node. As a result, a more robust approach is needed. To
do so we can employ the Field API as follows, assuming $field_name is already valid:

$field_info = field_info_field($field_name);
if (isset($field_info['cardinality'])
 && $field_info['cardinality'] != 1) {
 // ... code for a multi-value field
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[49]

Multi-value fields have a cardinality of either -1, for unlimited values, or the number
of values stored. Thus, anything other than one will be a multi-value field. There is
another, far easier way to check for multi-value fields: inspecting the field wrapper
class. A field wrapper class is the wrapper of a field, and is accessed by using
$wrapper->field. For multi-value fields, the class will be EntityListWrapper.
To check for multi-value fields we use the instanceof operator. In the following
snippet we assume again that $field_name is already valid.

if ($wrapper->$field_name instanceof EntityListWrapper) {
 // ... code for a multi-value field
}

A field wrapper class can either be an EntityListWrapper, an
EntityDrupalWrapper, an EntityStructureWrapper, or an EntityValueWrapper
object instance. EntityListWrapper is essentially an array of wrappers.
EntityDrupalWrapper is an entity wrapped up. EntityStructureWrapper wraps
anything that isn't an entity and has more than one property. EntityValueWrapper
wraps a single value.

The first part of the code is as follows:

function pde_field_value($field_wrapper) {
 try {
 if ($field_wrapper instanceof EntityListWrapper) {
 // Handle EntityListWrapper multi-value fields
 $output = array();
 foreach ($field_wrapper as $value) {
 $output[] = pde_field_value($value);
 }
 }
 else if ($field_wrapper instanceof EntityDrupalWrapper) {
 $output = pde_entity_value($field_wrapper);
 }
 else if ($field_wrapper instanceof EntityStructureWrapper) {
 $output = pde_structure_value($field_wrapper);
 }
 else {
 $output = pde_output(
 $field_wrapper->value(array('decode' => TRUE)));
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[50]

 catch (EntityMetadataWrapperException $e) {
 return '';
 }
 return $output;
}

function pde_output($msg) {
 return $msg . "\n";
}

The highlighted code checks for an EntityListWrapper instance by using the
instanceof operator. As we discovered earlier, this catches multi-value fields,
and the code iterates through each of the field's values, calling itself with each
one ($value).

After that, you'll notice two more checks for object instances, then an else clause.
The else clause at the end prints the value of the EntityValueWrapper objects by
calling the value() method. Before this else clause, the object instance check blocks
call handler functions that print an entity or a structure, respectively.

The second highlighted line catches EntityMetadataWrapperException
exceptions thrown when a field does not have a value. This allows us to gracefully
handle the situation.

Structure fields
Now that we've successfully distinguished single-value and multi-value fields, we
have to get around one last, very nasty trap before we can cook code with wrapped
fields. The trap: some fields are neither lists of values nor just values. For these fields
we can't use the value() method directly and have to resort to other means. We will
call these types of fields structure fields.

Structure field wrappers are either of the EntityDrupalWrapper class or the
EntityStructureWrapper class. The former class means that the field wrapper
is wrapping an entity. In our example, code for printing EntityDrupalWrapper
values would look as follows:

function pde_entity_value($entity_wrapper) {
 return pde_output($entity_wrapper->label());
}

We are relying on the entity's label() method to provide the appropriate output.
All CRUD of the entity are the same as we covered in earlier chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[51]

You'll notice in the code snippet of pde_field_value that the check for
EntityDrupalWrapper is done before EntityStructureWrapper. This is important
because EntityDrupalWrapper is a subclass of EntityStructureWrapper and
a wrapped entity will be an instance of both the classes.

Field type-specific code
Remember at the beginning of your entity journey, you learned that entities reduce
repetitive code to a minimum and that's what makes them so cool? Code snippets in
this chapter have highlighted this characteristic quite well. Unfortunately, there is
some unfinished business in Drupal's entity implementation and, as a result, we have
to resort to some old school code to handle these special cases. Fortunately, it will be
easy to write because there are so few!

Of all the fields that we are looking at in this chapter, only the following five
underlying field types are in need of special handling:

•	 datetime

•	 file

•	 link

•	 image

•	 text_with_summary

Each of these is a wrapper of the EntityStructureWrapper class. All the other field
types are a wrapper of the EntityValueWrapper class. The following table shows
these field types and their associated wrapper types, which is returned by calling
the type() method on the field's wrapper:

Field type Wrapper type

datetime struct

file field_item_file

link field_item_link

image field_item_image

text_with_summary text_formatted

We've already covered text_formatted fields in depth, when we looked at node
body and comment body properties. Another cool thing is the handling for file
and link fields is the same. Let's take a peek at the file/image, link, and datetime
fields in some code snippets, followed by the whole pde_structure_value()
function and its underlings.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[52]

File and image fields
File and image fields are only here because they missed the "implemented as
EntityDrupalWrapper" boat and gained a level of indirection. If we were to call the
getPropertyInfo() method on the field wrapper, we would see that there is a file
property and the property type is file. When the property type matches an entity
type name, we can start to get excited and try one more thing: call the get_class
PHP function, passing it the property. Behold! It's an EntityDrupalWrapper class!

The file property of either field_item_file or field_item_image wrappers is a file
entity wrapper so, in our example, we can call the previously mentioned pde_entity_
value() function and pass the file property, as shown in the following line of code:

pde_entity_value($struct_wrapper->file);

We can instead throw it back to pde_field_value, as given in the following line
of code:

pde_field_value($struct_wrapper->file);

Link fields
Next in order of complexity are link fields. Calling getPropertyInfo() on these
will show you that they have title and url text properties. In our example, we will
print a HTML link by using the following code:

$url = $struct_wrapper->url->value(array('decode' => TRUE));
$title = $struct_wrapper->title->value(array('decode' => TRUE));
if (empty($title)) {
 $title = $url;
}
return pde_output(l($title, $url));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[53]

Datetime fields
Fields of type datetime are quite complex and care must be taken to ensure that
things work as expected. Inspecting the wrapper properties and struct properties
shows us how to access all of the data. A wrapper property is a property of the
wrapper and is accessed directly from the wrapper. A struct property is a property
of the data returned by the value() method of the field wrapper.

Wrapper properties Struct properties
value value

value2 value2

duration

timezone

timezone_db

date_type

The following code shows us how to retrieve date and time:

$output = $date_wrapper->value->value(array('decode' => TRUE));
if ($date_wrapper->duration->value(array('decode' => TRUE))) {
 $output .= ' - '
 . $date_wrapper->value2->value(array('decode' => TRUE));
}

// $date_wrapper->value() returns the array of data available
$date_value = $date_wrapper->value();
$output .= ' ' . $date_value['timezone'];

The first line retrieves the start date, value; the second line consults the duration
to see if it's necessary to print the end date, value2. These are all accessed by using
the wrapper properties just named. The last line outputs the timezone string, which
comes from a struct property. Notice that we have to retrieve the structure first, by
using the value() method before this.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[54]

Putting it all together
Here's the pde_structure_value() function, and the rest of the code needed to
finish off the example. The code can be found in the sites/all/modules/pde/
pde/pde.drush.inc file.

function pde_structure_value($struct_wrapper) {
 $field_type = $struct_wrapper->type();

 switch ($field_type) {
 case 'field_item_link':
 $url = $struct_wrapper->url->value(array('decode' => TRUE));
 $title
 = $struct_wrapper->title->value(array('decode' => TRUE));
 if (empty($title)) {
 $title = $url;
 }
 return pde_output(l($title, $url));
 case 'field_item_image':
 case 'field_item_file':
 // Special case!
 // File entity: $field_wrapper->file
 return pde_field_value($struct_wrapper->file);
 case 'struct':
 return pde_struct_value($struct_wrapper);
 case 'text_formatted':
 return pde_output(
 $struct_wrapper->value->value(array('decode' => TRUE)));
 default:
 throw new Exception(
 'No idea how to handle structure type '.$field_type);
 }
}

function pde_struct_value($struct_wrapper) {
 $struct_type = $struct_wrapper->value->type();
 switch ($struct_type) {
 case 'date':
 return pde_date_value($struct_wrapper);
 default:
 throw new Exception(
 'No idea how to handle struct type '.$struct_type);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[55]

function pde_date_value($date_wrapper) {
 $output = $date_wrapper->value->value(array('decode' => TRUE));
 if ($date_wrapper->duration->value(array('decode' => TRUE))) {
 $output .= ' - '
 . $date_wrapper->value2->value(array('decode' => TRUE));
 }

 // $date_wrapper->value() returns the array of data available
 $date_value = $date_wrapper->value();
 $output .= ' ' . $date_value['timezone'];

 return pde_output($output);
}

In the pde_structure_value() function, we switch on the field wrapper type
and either funnel execution to a type handler or render the output in place. Links
are output as HTML anchor tags. The pde_struct_value() function could be
deemed as bloat, as date is the only struct type field we've dealt with. It's there for
possible expansion.

This is a simple, yet illustrative example of the data structures in play throughout the
common field implementations. There are differences that can make coding tedious
at times. Hopefully, with the previous information, you will be able to bake your
Drupal pie without it exploding in your oven— or in your face!

Converting the recipe content type to use
fields
Our conversion of the recipe module to use fully-fledged entities can continue now,
and we will convert all of the database fields in the recipe table to entity fields.
Converting the structure is only a part of the task. There are many code changes
necessary to ensure that all supporting code correctly manipulates the new structure.
The steps we will take to upgrade the module code are as follows:

1.	 Create the fields using the UI.
2.	 Export them to code inside a feature.
3.	 Put the exported declarations into recipe module and convert field name

prefixes to recipe_.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[56]

4.	 Tweak the recipe module code so that the old fields don't clobber the new
ones in the field admin UI, and add link, number, text, and token modules
as dependencies.

5.	 Add the update code in order to attach the new fields to recipe nodes, and
then for any existing recipe nodes copy data from the recipe table into the
new fields.

Creating fields
Create the fields in the same way as you would when building any content type.
Surf to admin/structure/types/manage/recipe/fields and add each field.
When creating the field type, the label and the field name will be the same for all
fields except the Yield units, Preparation time, Cooking time, and Additional
notes fields. Make sure that you change these to field_yield_unit, field_
preptime, field_cooktime, and field_notes, respectively.

The following table lists the new field specifications for recipe module. You'll also
notice that the field type in parentheses next to the field's machine name and under
the label will be any non-default settings that you need to specify.

Old field name New field specification

recipe_description field_description (Long text)
Label: Description

recipe_yield field_yield (Decimal)
Label: Yield
Minimum: 0

recipe_yield_unit field_yield_unit (Text)
Label: Yield units

recipe_notes field_notes (Long text)
Label: Additional notes

recipe_source field_source (Text)
Label: Source

N/A field_source_link (Link)
Label: Source link
Link Title: Static Title
Static Title: [node:field_source]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[57]

Old field name New field specification

recipe_instructions field_instructions (Long text)
Label: Instructions

recipe_preptime field_preptime (Integer)
Label: Preparation time
Minimum: 0
Suffix: minutes

recipe_cooktime field_cooktime (Integer)
Label: Cooking time
Minimum: 0
Suffix: minutes

We have added one extra field to ease linking to external web sources:
recipe_source_link. This field uses a token to automatically take the
link title from the Source field.

Once you're done adding the fields, you'll have a huge number of fields showing.
These will look as shown in the following screenshot:

Manage fields page of recipe content type after fields are added

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[58]

Exporting fields to a feature
Surf over to admin/structure/features/create and enter information into the
General Information fieldset at the top, so that it matches this screenshot:

Top fieldset of the create feature page

We are calling the feature Recipe2, and it will automatically have a machine name
of recipe2. Now you can move to the Components fieldset and expand Field
instances (field_instance) by clicking on the text. Select the checkbox in front of each
field beginning with node-recipe-recipe_. Each time that you select a checkbox, it
is wise to wait a moment for the dependencies to be automatically selected for you
and for the UI to be updated before selecting the next one. The UI moves around a
little and clicking too fast may result in unwanted checkboxes being selected. Once
you are done, it will look as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[59]

Component selection for the feature export

Click on the Download feature button and you will download a TAR file containing
the feature. Don't download or extract the feature TAR file into the development site
because it may cause havoc!

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[60]

Copying the code to the recipe module
In your terminal, go to the folder into which the feature was downloaded and extract
the feature file by using the following command:
$ tar xf recipe2.tar

Getting a directory listing of the feature's folder, you'll see files named recipe2.
features.field_base.inc and recipe2.features.field_instance.inc. Copy
recipe2.features.field_base.inc into the recipe module's folder and rename
the copy to recipe.field.inc. The recipe module folder can be found at sites/
all/modules/customized/recipe inside your development site's document root.
Now copy the recipe2_field_default_field_instances() function in recipe2.
features.field_instance.inc to the bottom of recipe.field.inc.
Open recipe.field.inc in your editor and you'll see the following code:

<?php
/**
 * @file
 * recipe2.features.field_base.inc
 */

/**
 * Implements hook_field_default_field_bases().
 */
function recipe2_field_default_field_bases() {
 $field_bases = array();
 ...
 // Exported field_base: 'field_cooktime'
 $field_bases['field_cooktime'] = array(
 'active' => 1,
 'cardinality' => 1,
 'deleted' => 0,
 'entity_types' => array(),
 'field_name' => 'field_cooktime',
 'foreign keys' => array(),
 'indexes' => array(),
 'locked' => 1,
 'module' => 'number',
 'settings' => array(
 'entity_translation_sync' => FALSE,
),
 'translatable' => 0,
 'type' => 'number_integer',
);
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[61]

Highlighted in the previous snippet, you'll see there are three instances of the
cooking time field's machine name, field_cooktime. Machine names for all fields
need to have their prefixes changed from field_ to recipe_ plus, we need to lock
the fields so that they can't be deleted. This will require the following four search and
replace operations:

•	 -field_ to -recipe_
•	 > 'field_ to > 'recipe_
•	 :field_ to :recipe_
•	 'locked' => 0 to 'locked' => 1

In the second search and replace directive be sure to put the space between > and '.
Now remove the 2 from both function names, and then save the file and we're done!

Tweaking recipe.module and recipe.info
Add the following lines to recipe.info so that all dependencies are installed:

dependencies[] = link
dependencies[] = number
dependencies[] = text
dependencies[] = token

Tweaks to recipe.module are quite vast as there are many places where the old
implementation used the fields directly. For now, we will just make two edits. The
first is to place the following code at the top of recipe_field_extra_fields()
function:

if (variable_get('recipe_fields_installed', FALSE)) {
 return array(
 'node' => array(
 'recipe' => array(
 'form' => array(
 'recipe_ingredients' => array(
 'label' => t('Ingredients'),
 'description' => t('Recipe module element'),
 'weight' => -3,
),
),
 'display' => array(
 'recipe_ingredients' => array(
 'label' => t('Ingredients'),

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[62]

 'description' => t('Recipe module element'),
 'weight' => -3,
),
),
),
),
);
}

The recipe_field_extra_field() function notifies Drupal about custom lines,
which the module wants in the manage field table or manage display UI. This
allows an administrator to reorder any custom widgets on the node edit form and
node display. Custom widgets can be injected into forms in a hook_form_alter
implementation. What we've done previously is to still show the ingredients
custom field on those pages since we are not overhauling that at this point. The first
line checks the schema version of recipe module to see if the updates have been
performed. We create the update code in the next step.

Our final edit to recipe module is to add the highlighted key/value pair to the
recipe_node_info() function, so that it now looks as shown in the following code:

/**
 * Implementation of hook_node_info().
 */
function recipe_node_info() {
 return array(
 'recipe' => array(
 'name' => t('Recipe'),
 'base' => 'recipe',
 'description' => t('Share your favorite recipes with your fellow
cooks.'),
 'locked' => TRUE,
)
);
}

The locked directive prevents an administrator from changing the content type's
machine name or deleting the content type. At this point we won't audit the module
to check the code can handle a machine name change. Locking the node type will
keep our heads above water if the code is unsafe.

We also replace the recipe_form hook implementation to create the node edit form
correctly and also add recipe_form_recipe_node_form_alter, which alters the
node form by injecting the ingredients fieldset and widgets in much the same way as
recipe_form did previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

You can see the code changes in recipe.module, when you check out the
chapter_05 branch. It might be handy to make a copy of the file from chapter_04
and run a diff to see the changes. In particular, notice the call to node_content_form
in recipe_form() function.

We also need to amend the recipe_load() function to no longer load values into
the node objects.

For a challenge, try to find the changes made to recipe_load()
in the chapter_06 branch version of recipe.module. Hint: It's
a different hook name because the module will only use Drupal 7
fields for its content.

Upgrading recipe module
A site already using recipe module will need an upgrade path in order to create and
attach Drupal 7 fields matching the names and types of the legacy recipe content. We
can then copy the legacy data into the new fields. To create and attach the fields, we
need to edit the recipe.install file, and add the following block of code to
the recipe_install_fields() function skeleton:

// Get info we will need to put fields into the same place
// they were in the non-field implementation
$winfo = field_info_extra_fields('node', 'recipe', 'form');
$dinfo = field_info_extra_fields('node', 'recipe', 'display');

foreach (recipe_field_default_fields() as $info) {
 $field_name = $info['field_config']['field_name'];
 $instance = &$info['field_instance'];

 // Don't install this twice
 if (field_info_instance('node', $field_name, 'recipe')) {
 continue;
 }

 // Set the weight of the field in all display modes
 if (isset($dinfo[$field_name]['display'])) {
 foreach ($dinfo[$field_name]['display']
 as $view_mode => $settings) {
 $instance['display'][$view_mode]['weight']
 = $settings['weight'];
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[64]

 // Set the weight of the editing widget
 if (isset($winfo[$field_name])) {
 $instance['widget']['weight'] = $winfo[$field_name]['weight'];
 }

 // Add the field to the recipe content type
 field_create_field($info['field_config']);
 field_create_instance($instance);
}

Non-highlighted lines of code copy legacy field weights (ordering) to the new field
declarations that we implemented earlier in recipe_field_default_fields().
Field API function field_info_extra_fields() is used to retrieve weights
(ordering) and display settings for the legacy data. Following that, we adjust the
new field declaration weights for all display modes and for the edit form.

To complete the code block, we then call field_create_field() to save the field
configuration , and make a call to field_create_instance() to attach the field to
recipe entities.

We also add some term reference fields to recipe entities so that we can associate
our new terms to recipe entities. Inside the recipe_install_fields functions
and directly below the code that we just added, paste the following code block:

// term reference fields
foreach (recipe_vocabularies() as $machine_name => $info) {
 $field_name = 'term_' . $machine_name;

 if (field_info_instance('node', $field_name, 'recipe')) {
 continue;
 }
 $field = array(
 'field_name' => $field_name,
 'type' => 'taxonomy_term_reference',
 'settings' => array(
 'allowed_values' => array(
 array(
 'vocabulary' => $machine_name,
 'parent' => 0
),
),
),
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[65]

 field_create_field($field);

 $instance = array(
 'field_name' => $field_name,
 'entity_type' => 'node',
 'label' => $info['name'],
 'bundle' => 'recipe',
 'required' => true,
 'widget' => array(
 'type' => 'options_select'
),
 'display' => array(
 'default' => array('type' => 'hidden'),
 'teaser' => array('type' => 'hidden')
)
);

 field_create_instance($instance);
}

The preceding code block splits the field creation and the instance creation
(field attachment), meanwhile showing the structure of the field configuration
($field) and field instance ($instance) declarations. The field_create_field()
and field_create_instance() function calls are highlighted again.

Add the following code block at the end of the recipe.install file in order to call
the recipe_install_fields() function during a site upgrade:

/**
 * Install fields needed by recipe module.
 */
function recipe_update_7202(&$sandbox) {
 recipe_install_fields();
}

To complete the upgrade, we must copy data from the legacy fields to the Drupal 7
fields. Beneath the code you added, paste the following code:

/**
 * Migrates recipe data from old schema into fields.
 */
function recipe_update_7203(&$sandbox) {
 if (!isset($sandbox['progress'])) {
 $sandbox['progress'] = 0;
 $sandbox['current_nid'] = 0;
 $sandbox['max']

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[66]

 = db_query(
 "SELECT COUNT(DISTINCT nid) FROM {node} WHERE type = :type",
 array(':type' => 'recipe')
)->fetchField();
 }

 $query = db_select('node', 'n');
 $query->join('recipe', 'r', 'n.nid = r.nid');
 $query->fields('r')
 ->condition('n.type', 'recipe')
 ->range($sandbox['progress'], 10);
 $result = $query->execute();

 foreach ($result as $record) {
 $sandbox['current_nid'] = $record->nid;
 $nwrapper = entity_metadata_wrapper('node', $record->nid);

 if (valid_url($record->source, TRUE)) {
 // Put the URL into the link field
 $nwrapper->field_source_link->url = $record->source;
 }
 $nwrapper->field_source = $record->source;
 $nwrapper->field_yield = $record->yield;
 $nwrapper->field_yield_unit = $record->yield_unit;
 $nwrapper->field_description->value = $record->description;
 $nwrapper->instructions->value = $record->instructions;
 $nwrapper->field_notes->value = $record->notes;
 $nwrapper->field_preptime = $record->preptime;
 $nwrapper->field_cooktime = $record->cooktime;

 $sandbox['progress']++;
 }

 $sandbox['#finished']
 = empty($sandbox['max'])
 ? TRUE : ($sandbox['progress'] / $sandbox['max']);
}

This function is the meat and potatoes of the update and it batch processes all of
the existing nodes to migrate data from the recipe database table to the new fields.
The three highlighted lines are all setting the value property of the field wrapper.
These are all fields of type text_formatted. You may recall these are structure
fields, so we need special handling here. What isn't handled in the previous code
are text formats for these long text fields, because there isn't full support for that in
recipe module. Remember to deal with that in any code that you write.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

In the recipe_install() function, you need to also add the following line in order
to install the fields when the recipe module is installed for the first time.

recipe_install_fields();

Now you can update your site database by using Drush, which will install and
upgrade all the fields during a database update. Use the following command:

$ drush updatedb

On the Manage fields page at admin/structure/types/manage/recipe/fields
you'll now see the following:

Recipe node manage field page after the update

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Fields

[68]

Summary
In this chapter we learned all about the common fields in Drupal 7: date, file,
image, link, number, text, and term reference. We learned to differentiate
between single-value and multi-value fields, and we then programmatically
accessed all of the covered field types. Finally, we programmatically created fields,
added them to a content type, and migrated data into them. Next, we will take a
good look at programming field collections—another powerful Drupal 7 concept
made possible thanks to the entity paradigm.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field
Collections

We've almost covered all there is to know about Drupal 7 entities. One last common
entity type needs our attention: field collections. In this chapter we:

•	 Describe field collection entities, and how they fit into the Drupal landscape
•	 Programmatically access a field collection's content
•	 Programmatically add a field collection entity to a node
•	 Programmatically add a field collection to a content type

Before Drupal 7
In Drupal days of yore, there were two main ways of grouping fields together and
attaching them to a node as a field. We could even have had that field be multi-value,
allowing multiple groups of the same fields to be referenced.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[70]

This is illustrated in the following screenshot:

Example of field groups in a multi-value field

The previous screenshot shows an ingredients multi-value field with a table of five
possible values. Each value or row is a group of the following fields:

•	 Quantity
•	 Units
•	 Ingredient name
•	 Processing/Notes

Each row can be moved up or down to change their order. To move them, the user
drags the crossed arrow icon on the left of each row to a new position.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[71]

In Drupal 6, this type of data model was built by using multigroups that came along
with CCK 3.x. Prior to that, such a model had to be built using a multi-value node
reference field. Node references resulted in a poor user experience, because the node
being referenced could not be edited directly on the edit form of the referencing
node. In addition, referenced nodes soaked up storage space because properties,
such as author, were often not needed.

Thanks to the entity paradigm, field collections were possible, and these gave us
lightweight storage and a better user experience. Field collections are essentially
a multi-value field storing entity references. When you create a new field collection,
you are declaring a field collection entity bundle. That entity bundle's edit form is
injected into the node edit form by the Field Collection module. This enables a user
to edit the values directly on the referencing node's edit form, using an interface
similar to that shown in the previous screenshot. When the edit form is submitted,
any new values result in a new entity being created to store those values. That entity
is then referenced in the field collection field of the node being saved.

Creating a field collection field
Our practical examples will require a field collection that will eventually replace
the legacy ingredients hogwash in the old code. Let's create a new ingredients field
collection in the recipe node.

After you have installed your Chapter 6 development site, surf over to admin/
structure/types/manage/recipe/fields. In the Add new field section of the
form you'll now see Field collection listed in the field type select list. In the Label text
box, enter Ingredients. The machine name will automatically be generated as
field_ingredients. This is fine for now. Select Field collection as the type,
Embedded as the widget, and move the field up to be above recipe_ingredients,
and then click on Save. Choose unlimited for the number of values, and keep the
defaults for the remaining settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[72]

After you finish, your model will look as shown in the following screenshot:

Manage fields page of recipe content type after adding the ingredients field collection

Now we can add fields to the field collection by going to the field collection
Manage fields page. Navigate to admin/structure/field-collections/field-
ingredients/fields, and add fields matching the following new field specifications
for the recipe_ingredients field collection:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[73]

New field specifications Allowed values for field_unit_key

field_quantity (Decimal)
Label: Quantity
Minimum: 0

bunch|bunch (bn)

can|can (cn)

carton|carton (ct)

centigram|centigram (cg)

centiliter|centiliter (cl)

clove|clove (clv)

cup|cup (c)

dash|dash (ds)

deciliter|deciliter (dl)

drop|drop (dr)

us fluid ounce|fluid ounce (fl
oz)

us gallon|gallon (gal)

gram|gram (g)

kilogram|kilogram (kg)

liter|liter (l)

loaf|loaf (lf)

milligram|milligram (mg)

milliliter|milliliter (ml)

ounce|ounce (oz)

package|package (pk)

pinch|pinch (pn)

us liquid pint|pint (pt)

pound|pound (lb)

us liquid quart|quart (q)

slice|slice (sli)

tablespoon|tablespoon (T)

teaspoon|teaspoon (t)

unit|unit

unknown|unknown

field_unit_key (List (text))
Label: Unit
Allowed values: see right column
Widget: Select list

field_ingredient (Entity Reference)
Label: Ingredient
Widget: Autocomplete
Target type: File
Sort by: A property of the base table of the
entity
Sort property: filename
Size of text field: 25

field_note (Text)
Label: Processing/Notes
Size of text field: 33

Note that we have a new field type: entity reference. We have selected File
entities as the target type for field_ingredient as a placeholder; we will change
this in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[74]

Field collection entities
Field collection entities are those referenced by the field collection field just
discussed. Each individual field collection is an independent entity bundle, so all
of them can have different fields attached. A field collection entity type has the
following wrapper and entity properties:

Wrapper
property

Type (Read/
Write)

Description Entity property

item_id integer (R) Field collection item ID
revision_id integer (R) Revision ID
field_name string (R) Whether or not the node is new
archived integer

(R/W)
Node type (bundle name)

url string (R) URL for viewing the field
collection

N/A

host_entity entity (R/W) Entity containing the field
collection

N/A

N/A integer
(R/W)

TRUE if this is the default
revision

default_
revision

Convert the first if block in pde_field_value() to the following code:

if (isset($info[$pkey]['field']) && $info[$pkey]['field']) {
 $value = pde_field_value($wrapper->$pkey);
 if (is_array($value)) {
 foreach ($value as $i => $v) {
 $key = $pkey."[$i] (" . $wrapper->$pkey->type() . ')';
 $rows[$key] = $v;
 }
 }
 else {
 $key = "$pkey (" . $wrapper->$pkey->type() . ')';
 $rows[$key] = $value;
 }
}

The changes improve the output formatting for multi-value fields in our Drush
print-entity command. Now we will see multiple rows of field_name[n] for
each value within the multi-value field. The n is the delta, or index, of the field value
within the multi-value field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[75]

We also need to add some special handling for field collections. As they are
entities, let's change pde_entity_value() to print the full set of properties and
fields of an entity. The pde_drush_print_entity() function already prints these,
but we want the entity properties and fields to be printed on the right side of the
table rather than as a nested table.

function pde_entity_value($entity_wrapper) {
 $info = $entity_wrapper->getPropertyInfo();

 $output = pde_output('identifier: '
 . $entity_wrapper->getIdentifier());
 $output .= pde_output('label: ' . $entity_wrapper->label());
 $output .= pde_output('type: ' . $entity_wrapper->type());

 foreach ($entity_wrapper as $pkey => $pwrapper) {
 if (isset($info[$pkey]['field']) && $info[$pkey]['field']) {
 $msg = $info[$pkey]['label'];
 }
 else {
 $msg = $pkey;
 }
 $msg .= ': ';

 if ($entity_wrapper->$pkey instanceof EntityDrupalWrapper) {
 $msg .= pde_output($entity_wrapper->$pkey->label());
 }
 else if ($entity_wrapper->$pkey instanceof EntityListWrapper) {
 $items = array();
 foreach ($entity_wrapper->$pkey as $key => $value) {
 $item_value = "[$key] ";
 if ($value instanceof EntityDrupalWrapper) {
 $item_value .= $value->label();
 }
 else {
 $item_value .= pde_field_value($value);
 }
 $items[] = $item_value;
 }

 $msg .= "\n\t";
 if (!count($items)) {
 $msg .= "<empty>";
 }
 $msg .= implode("\n\t", $items) . "\n";

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[76]

 }
 else {
 $msg .= pde_field_value($entity_wrapper->$pkey);
 }
 $output .= $msg;
 }
 return $output;
}

This is quite a huge change from the previous implementation.The reason for
this is that we get an infinite loop if we simply call the pde_field_value()
function for each field. To prevent infinite loops we need to avoid sending entities
to pde_field_value(), and instead we use the output from the label() method.
The first highlighted line does so, when the field wrapper wraps an entity.

We also output multi-value fields in a pretty way by looping through all of the
values, and use the label() method output for entities or, for everything else,
the output from the pde_field_value() function. These are the second and third
highlighted lines.

For all other fields we use the output from pde_field_value()as shown in the
fourth highlighted line.

Adding a field collection to a node
There's nothing too challenging about adding a field collection to a node, because
a field collection is an entity. You simply create the field collection entity and then
attach it to the node.

Let's look at two examples of using the field_ingredients field collection that we
just created. For these examples assume that node 2 exists, but has nothing added in
field_ingredients. The first example, which uses no wrapper code, is as follows:

$node = node_load(2);
$data = array(
 'field_name' => 'field_ingredients',
);
// Create the field collection
$fc = entity_create('field_collection_item', $data);
// Set the host entity and field values then save
$fc->setHostEntity('node', $node);
$fc->field_quantity[LANGUAGE_NONE][0]['value'] = 1.0;
$fc->field_unit_key[LANGUAGE_NONE][0]['value'] = 'gram';
$fc->field_ingredient[LANGUAGE_NONE][0]['value'] = 'Salt';
$fc->field_note[LANGUAGE_NONE][0]['value'] = 'coarse';
$fc->save();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[77]

The same thing, but this time using wrappers, is shown in the following code:

$target_wrapper = entity_metadata_wrapper('node', 2);
$data = array(
 'field_name' => 'field_ingredients',
);
// Create the field collection
$fc = entity_create('field_collection_item', $data);
$fc_wrapper =
 entity_metadata_wrapper('field_collection_item', $fc);
// Set the host entity and field values then save
$fc_wrapper->host_entity = $target_wrapper;
$fc_wrapper->field_quantity = 1.0;
$fc_wrapper->field_unit_key = 'gram';
$fc_wrapper->field_ingredient = 'Salt';
$fc_wrapper->field_note = 'coarse';
$fc_wrapper->save();

The comments in the code tell the story. The wrapper version has one, highlighted,
extra line. The highlighted code in the non-wrapper version is slightly terser than
the wrapper version.

Attaching a field collection to
a content type
Programmatically creating a field collection can be done in much the same way as
we did with fields. Because we have already created the field collection, we can
now perform the following steps in order to have these added to recipe nodes at
installation time or after an upgrade:

1.	 Export the field collection to code inside a feature.
2.	 Copy the exported declarations into the recipe module and rename

field_ingredients to recipe_ingredients and change the prefixes
of the fields within the field collection to ri_.

3.	 Tweak the recipe module code to remove the legacy fields from the field
admin UI and node edit forms.

4.	 Add update code to attach the new field collection to recipe nodes. We will
defer copying data from the recipe_node_ingredient table into the new
field collections until the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[78]

After these changes are completed, the examples in the
previous section would need the field names changed to
match the new names.

Exporting field collection and fields
Point your browser to admin/structure/features/create and enter values into
the General Information section of the form so that it matches the example shown in
the following screenshot:

General Information fieldset of the create feature page

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[79]

In the Components fieldset we expand the Fields section and select the checkbox
for node-recipe-field_ingredients. Continue to select the checkboxes of all
other fields beginning with field_collection_item and node-recipe-recipe.
The Dependencies (dependencies), Field Bases (field_base) and Field Instances
(field_instance) sections will look as shown in the following screenshot:

Part of the Components fieldset of the create feature page

Click on the Download feature button to download the feature to your computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[80]

Copying the code to the recipe module
In your terminal, navigate to the folder into which the feature was downloaded,
and extract the feature file by using the following command:
$ tar xf recipe2.tar

Open recipe2.features.field_base.inc and recipe2.features.field_
instance.inc found in the newly-created recipe2 folder. Copy the recipe2_
field_default_field_bases() and recipe2_field_default_field_
instances() functions to recipe.field.inc after removing all functions in the
latter file. You'll find recipe.field.inc in the recipe module folder sites/all/
modules/customized/recipe of your development site.

In the pasted code, make the following replacements, in the given order:

1.	 recipe2 to recipe
2.	 field_ingredients to recipe_ingredients
3.	 field_ingredient to ri_ingredient
4.	 field_note to ri_note
5.	 field_quantity to ri_quantity
6.	 field_unit_key to ri_unit_key
7.	 'locked' => 0 to 'locked' => 1

Tweaking recipe.module
Inside recipe.module we can now empty the array returned by the recipe_field_
extra_fields() function since there are no longer any legacy fields. The top of the
function now looks as shown in the following code snippet:

function recipe_field_extra_fields() {
 if (variable_get('recipe_fields_installed', FALSE)) {
 return array();
 }

 $extra = array();
 $extra['node']['recipe'] = array(
...

The highlighted line shows the empty array. Replace the recipe_form_recipe_
node_form_alter() function with the following code:

/**
 * Implementation of hook_form_FORM_ID_alter().
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[81]

function recipe_form_recipe_node_form_alter(&$form, &$form_state) {
 $language = $form['language']['#value'];
 $children =
 element_children($form['recipe_ingredients'][$language]);
 foreach ($children as $delta) {
 $fcoll = &$form['recipe_ingredients'][$language][$delta];
 $fcoll['ri_quantity'][$language][0]['value']['#size'] = 7;
 }

 $css = '.field-name-recipe-ingredients .form-wrapper { display:
inline-block; }';
 $form['recipe_ingredients']['#attached']['css'] = array(
 $css => array('type' => 'inline'),
);
}

The first block of code sets the visible size of the quantity text field to 7. The second
block makes all of the fields display inline rather than above one another on the node
edit form. Surf to node/add/recipe, and scroll down to see the fruits of your work.

Field collection user interface for entering values

The final change is to recipe.info, where we add the following highlighted
dependency lines:

dependencies[] = entity
dependencies[] = entityreference
dependencies[] = field_collection
dependencies[] = link
dependencies[] = list
dependencies[] = number
dependencies[] = options
dependencies[] = taxonomy
dependencies[] = text
dependencies[] = token

www.it-ebooks.info

http://www.it-ebooks.info/

Developing with Field Collections

[82]

Updating code is unnecessary
For the changes we have made, there is no need for us to add any update code at this
point. Calls to the recipe_install_fields() function that we added to the update
and installation code in an earlier chapter will take care of installing and updating
the field collection and its fields.

Summary
In this chapter we discovered field collections, their programmatic reading, creation,
and addition to existing entities. Next, we will make custom database data available
to Drupal 7 by exposing them as entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities
So far in this book, we have played around with entities implemented by Drupal
core and contributed modules. In our next installment, we will use a pressure cooker
to create a typical, slow-cooked dish quickly: exposing custom data to Drupal. In this
chapter, we do the following:

•	 Expose a database table as a non-fieldable entity
•	 Expose a database table as a fieldable entity
•	 Enable exporting, importing, and cloning of bundle configurations

Motivation for exposing entities
Sites that do anything useful tend to have a lot of legacy data that they use
throughout the site. Because these data vary a lot and are tied into business
processes that are unique to each business, it becomes necessary to build custom
solutions per site. Until the entity paradigm existed, each of these custom solutions
required reinvention of the wheel to make the data available to adequate numbers
of solution modules. For example, one database table needed custom code for each
of the token and views modules just so those modules would retrieve table data
correctly. Thankfully, we are past this stone-age style of implementation, because
we have entities!

We will add code to the recipe module piece-by-piece to gradually expose
ingredients as fully-fledged entities that are able to please even the most
discerning site builder's palate.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[84]

Fast track your data exposure
The fastest way to create custom entities is to use the Entity Construction Kit (ECK)
module. ECK will do all of the dirty work for you after you enter an entity type name
and an optional bundle name. After that, you add your fields by using the generated
admin UI. The interface is similar to node field management. However, there's one
thing ECK can't do at the time of writing—expose an existing database table to Drupal.

Exposing an existing database table as entities can be done easily by combining the
entity module's helpers with one single hook implementation: hook_entity_info.
Let's say we want to expose the recipe_ingredient table as a non-fieldable entity.
The table schema would be as shown in the following screenshot:

recipe_ingredient

id
name

serial
varchar

link int

Schema of the recipe_ingredient table in recipe module

The hook_entity_info implementation, recipe_entity_info, inside the
recipe.module file will look like the following:

/**
 * Implements hook_entity_info().
 */
function recipe_entity_info() {
 $info = array();
 $info['recipe_ingredient'] = array(
 'label' => t('Ingredient'),
 'plural label' => t('Ingredients'),
 'description' => t('Recipe ingredients.'),
 'entity class' => 'Entity',
 'controller class' => 'EntityAPIController',
 'base table' => 'recipe_ingredient',
 'fieldable' => FALSE,
 'entity keys' => array(
 'id' => 'id',
 'label' => 'name',
),
);
 return $info;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[85]

What you see in the preceding code snippet is the minimal code needed to expose
data as entities. The key directives within the preceding entity type declaration are
as follows:

•	 entity class: This is the class used for entities returned from entity_load
•	 controller class: This is the class used to load entity objects
•	 base table: This is the database table containing our data
•	 entity keys: This contains the database field names for the entity ID and

label properties

In our recipe_ingredient table (our base table) we have the id and name fields
storing the entity ID and label respectively. We have specified these in the entity
keys directive. We are also using Entity and EntityAPIController as the entity
and controller class respectively. These are provided by the entity module, and
using them allows us to expose our data quickly. These classes can be overridden
when special handling is needed.

Once you have the code in place, you can write some standard entity creation code
such as the following:

 $data = array(
 'name' => 'Salt',
 'link' => 0,
);
 $entity = entity_create('recipe_ingredient', $data);
 $wrapper = entity_metadata_wrapper('recipe_ingredient', $entity);
 $wrapper->save();

Allow fields on your entity
Making your exposed entity type fieldable is as simple as changing the fieldable
value in the entity type declaration to TRUE:

...
'fieldable' => TRUE,
...

Once this is in place and you have cleared the caches, you can programmatically
add fields to the entity. Remember though, that the bundle name is the same as the
entity type name. For our example, that would be recipe_ingredient. This is fine
for scenarios where your entity type will have the same set of fields for all entities;
in other words, a single bundle. For cases where multiple bundles are required, we
need more tweaks.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[86]

Give it multiple bundles
To allow our entity type to have multiple bundles, we make two changes to the
entity type declaration. We add the bundle directive to the set of entity keys and
the bundles directive containing all bundles:

...
'entity keys' => array(
 'id' => 'id',
 'label' => 'name',
 'bundle' => 'type',
),
'bundles' => array(
 'standard' => array(
 'label' => t('Standard'),
),
),
...

The bundle directive in the entity keys array tells Drupal the database field name
containing the bundle name of each record. The field is typically 32 characters long
and of the varchar type. We will add the type field to the recipe_ingredient table
in an update.

Each bundle is declared within the bundles array of the entity type declaration.
In the previous code snippet, we have declared the standard bundle with only
a label, which is all that is needed for it to work.

Let's create some code to add the type field to the recipe_ingredient table.
Add the following code to the recipe_ingredient table declaration within the
recipe_schema() function in recipe.install:

'type' => array(
 'description' => 'The type of this ingredient.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
 'default' => 'standard',
),

Next, at the bottom of the file, add the following function:

/**
 * Make schema changes for ingredients as entities.
 */
function recipe_update_7205(&$sandbox) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[87]

 // Add type field
 $type_schema = array(
 'description' => 'The type of this ingredient.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
 'default' => 'standard',
);
 db_add_field('recipe_ingredient', 'type', $type_schema);
}

After adding this code and updating the database, you can have multiple fieldable
bundles for your entity type.

Administration interface and exportability
All of the previous code forces us to use programmatic ways to manage bundles and
fields of our entity type. We want administrative users to be able to manage bundles
and fields through the web interface. In addition to this, we would like to allow users
to export and import bundle configurations. To do so we need the following things:

•	 A way to store information about the bundles created by the user
•	 Expose that information to Drupal as entities with some extra directives
•	 Provide access handling in order to prevent unauthorized users from

changing our bundles

Storing bundle information
To store the bundle information, we will use a new database table called
recipe_ingredient_type. Add the following table declaration to recipe_schema
in the recipe.install file.

$schema['recipe_ingredient_type'] = array(
 'description'
 => 'Stores information about all defined ingredient types.',
 'fields' => array(
 'id' => array(
 'type' => 'serial',
 'not null' => TRUE,
 'description' => 'Primary Key: Unique ingredient type ID.',
),
 'type' => array(
 'description'
 => 'The machine-readable name of this ingredient type.',

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[88]

 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
),
 'label' => array(
 'description'
 => 'The human-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,
 'default' => '',
),
 'weight' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'size' => 'tiny',
 'description' => 'The weight of this ingredient type in relation
to others.',
),
 'data' => array(
 'type' => 'text',
 'not null' => FALSE,
 'size' => 'big',
 'serialize' => TRUE,
 'description' => 'A serialized array of additional data related
to this ingredient type.',
),
 'status' => array(
 'type' => 'int',
 'not null' => TRUE,
 // Set the default to ENTITY_CUSTOM without using the
 // constant as it is not safe to use it at this point.
 'default' => 0x01,
 'size' => 'tiny',
 'description' => 'The exportable status of the entity.',
),
 'module' => array(
 'description' => 'The name of the providing module if the entity
has been defined in code.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[89]

),
 'primary key' => array('id'),
 'unique keys' => array(
 'type' => array('type'),
),
);

The type and label database fields store the machine name and human-readable
names of the bundle. The data field is required by the Entity API classes , but we
don't use it. The status field is a flag that tracks whether the bundle has been
defined in code or has been custom built or edited through the web interface.

Next, add the following update() function to the bottom of recipe.install.
The code adds the recipe_ingredient_type table to an existing installation of the
recipe module. We have to declare the complete table schema rather than pulling
it from recipe_schema in order to prevent future schema changes from breaking
the upgrades.

/**
 * Make schema changes for ingredients as entities.
 */
function recipe_update_7206(&$sandbox) {
 // Add ingredient type table
 $table_name = 'recipe_ingredient_type';
 $schema[$table_name] = array(
 'description' => 'Stores information about all defined ingredient
types.',
 'fields' => array(
 'id' => array(
 'type' => 'serial',
 'not null' => TRUE,
 'description' => 'Primary Key: Unique ingredient type ID.',
),
 'type' => array(
 'description'
 => 'The machine-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 32,
 'not null' => TRUE,
),
 'label' => array(
 'description'
 => 'The human-readable name of this ingredient type.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => TRUE,

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[90]

 'default' => '',
),
 'weight' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'size' => 'tiny',
 'description' => 'The weight of this ingredient type in
relation to others.',
),
 'data' => array(
 'type' => 'text',
 'not null' => FALSE,
 'size' => 'big',
 'serialize' => TRUE,
 'description' => 'A serialized array of additional data
related to this ingredient type.',
),
 'status' => array(
 'type' => 'int',
 'not null' => TRUE,
 // Set the default to ENTITY_CUSTOM without using the
 // constant as it is not safe to use it at this point.
 'default' => 0x01,
 'size' => 'tiny',
 'description' => 'The exportable status of the entity.',
),
 'module' => array(
 'description' => 'The name of the providing module if the
entity has been defined in code.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
),
),
 'primary key' => array('id'),
 'unique keys' => array(
 'type' => array('type'),
),
);
 db_create_table($table_name, $schema[$table_name]);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[91]

Run the database updates by using Drush, and the new table will be ready for the
next step:
$ drush updatedb

Exposing bundle information and handling
access rights
Bundle information exposure and access rights are both implemented by using extra
directives in hook_entity_info and supporting functions. Let's begin with the top
part of recipe_entity_info:

/**
 * Implements hook_entity_info().
 */
function recipe_entity_info() {
 $info = array();
 $info['recipe_ingredient'] = array(
 'label' => t('Ingredient'),
 'plural label' => t('Ingredients'),
 'description' => t('Recipe ingredients.'),
 'entity class' => 'Entity',
 'controller class' => 'EntityAPIController',
 'base table' => 'recipe_ingredient',
 'fieldable' => TRUE,
 'view modes' => array(
 'full' => array(
 'label' => t('Full content'),
 'custom settings' => FALSE,
),
),
 'entity keys' => array(
 'id' => 'id',
 'bundle' => 'type',
 'label' => 'name',
),
 'bundles' => array(),
 'bundle keys' => array(
 'bundle' => 'type',
),
 'label callback' => 'entity_class_label',
 'uri callback' => 'entity_class_uri',
 'module' => 'recipe',
);

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[92]

We have changed the declaration of recipe_ingredient by assigning an empty
array to the bundles directive and dynamically building the array elements from
the recipe_ingredient_type table.

Highlighted lines in recipe_ingredient show the following extra directives that
are needed:

•	 bundle keys: This has to be declared because we are using a load handler
in the admin URI for each bundle. This directive tells Drupal which entity
object property returns the bundle name. We'll discuss more about this in
a moment.

•	 label callback: This function is called to retrieve the entity's label. The
entity module implements the entity_class_label function, which calls
the label() method of the loaded entity object.

•	 uri callback: This function is called to retrieve the entity's URI. The entity
module implements entity_class_uri, which calls the uri() method of
the loaded entity object.

•	 module: This tells the entity module which module exposes the entity type.
This is used for calling hooks, generating file paths, and for declaring import
dependencies in bundle exports. This directive also helps the entity module
provide default integration with solution modules such as views and token.

The following is part two of recipe_entity_info:

 // Add bundle info but bypass entity_load() as we cannot
 // use it here.
 $types = db_select('recipe_ingredient_type', 'rit')
 ->fields('rit')
 ->execute()
 ->fetchAllAssoc('type');

 foreach ($types as $type => $tinfo) {
 $info['recipe_ingredient']['bundles'][$type] = array(
 'label' => $tinfo->label,
 'admin' => array(
 'path' => 'admin/structure/ingredients/manage/%recipe_
ingredient_type',
 'real path' => 'admin/structure/ingredients/manage/' . $type,
 'bundle argument' => 4,
 'access arguments' => array('administer ingredients'),
),
);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[93]

This code queries the recipe_ingredient_type table for user-defined bundles, and
uses that information to dynamically build bundle directives. Notice the additional
admin directive that we didn't use before.

The entity module uses the admin directive to build menu items for the bundle
administration interface. The path directive specifies the URI with a load handler
named %recipe_ingredient_type. Drupal's menu system takes this URI
component (that is, index 4 slash delimited) and passes that component value to
the recipe_ingredient_type_load() function. For example, when the user
navigates to admin/structure/ingredients/manage/standard, Drupal calls
recipe_ingredient_type_load() passing it the string value standard.

The manage part of the URI is also significant because the entity module appends
manage to the admin ui path of the bundle definition entity. The bundle definition
entity is an entity type that stores the defined bundles of another entity. The following
is the final code block of recipe_entity_info in which we declare our bundle
definition entity named recipe_ingredient_type:

$info['recipe_ingredient_type'] = array(
 'label' => t('Ingredient type'),
 'plural label' => t('Ingredient types'),
 'description' => t('Ingredient types for Recipe module.'),
 'entity class' => 'IngredientType',
 'controller class' => 'EntityAPIControllerExportable',
 'base table' => 'recipe_ingredient_type',
 'fieldable' => FALSE,
 'bundle of' => 'recipe_ingredient',
 'exportable' => TRUE,
 'entity keys' => array(
 'id' => 'id',
 'name' => 'type',
 'label' => 'label',
),
 'access callback' => 'recipe_ingredient_access',
 'module' => 'recipe',
 // Enable the entity API's admin UI.
 'admin ui' => array(
 'path' => 'admin/structure/ingredients',
 'file' => 'recipe.admin.inc',
 'controller class' => 'IngredientTypeUIController',
),
);

 return $info;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[94]

The highlighted parts of the recipe_ingredient_type entity type declaration are
as follows:

•	 IngredientType: This is used to override the Entity class in order to
support entity export

•	 EntityAPIControllerExportable: This is a subclass of
EntityAPIController that we are using so that our entity
becomes exportable

•	 bundle of: This tells the entity module that this entity is the bundle
definition entity for recipe_ingredient

•	 exportable: This is set to TRUE to make these entities exportable
•	 name: This tells the Entity API to use the specified field as an identifier for

the entity instead of the numeric ID
•	 access callback: This function is called to check a user's right to

manage entities
•	 path: This is the URI of the entity administration UI and a base path for the

bundle administration UI of recipe_ingredient mentioned earlier
•	 file: This is the name of the file (relative to the module) containing the

administration UI controller class declaration and supporting code
•	 IngredientTypeUIController: This enables overriding of the

EntityDefaultUIController class in order to set the menu item description

Adding the support code
To complete the overhaul, we add some class declarations and functions to
recipe.module and recipe.admin.inc. First, add the following code to
recipe.admin.inc:

/**
 * Generates the recipe_ingredient_type editing form.
 */
function recipe_ingredient_type_form($form, &$form_state, $recipe_
ingredient_type, $op = 'edit') {

 if ($op == 'clone') {
 $recipe_ingredient_type->label .= ' (cloned)';
 $recipe_ingredient_type->type = '';
 }

 $form['label'] = array(
 '#title' => t('Label'),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[95]

 '#type' => 'textfield',
 '#default_value' => $recipe_ingredient_type->label,
 '#description' => t('The human-readable name of this ingredient
type.'),
 '#required' => TRUE,
 '#size' => 30,
);
 // Machine-readable type name.
 $form['type'] = array(
 '#type' => 'machine_name',
 '#default_value' => isset($recipe_ingredient_type->type) ?
$recipe_ingredient_type->type : '',
 '#maxlength' => 32,
 '#disabled' => $recipe_ingredient_type->isLocked() && $op !=
'clone',
 '#machine_name' => array(
 'exists' => 'recipe_ingredient_get_types',
 'source' => array('label'),
),
 '#description' => t('A unique machine-readable name for this
ingredient type. It must only contain lowercase letters, numbers,
and underscores.'),
);

 $form['actions'] = array('#type' => 'actions');
 $form['actions']['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Save ingredient type'),
 '#weight' => 40,
);
 $form['weight'] = array(
 '#type' => 'weight',
 '#title' => t('Weight'),
 '#default_value' => $recipe_ingredient_type->weight,
 '#description' => t('When showing ingredients, those with lighter
(smaller) weights get listed before ingredients with heavier (larger)
weights.'),
 '#weight' => 10,
);

 if (!$recipe_ingredient_type->isLocked() && $op != 'add' && $op !=
'clone') {
 $form['actions']['delete'] = array(
 '#type' => 'submit',
 '#value' => t('Delete ingredient type'),

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[96]

 '#weight' => 45,
 '#limit_validation_errors' => array(),
 '#submit' => array('recipe_ingredient_type_form_submit_delete')
);
 }
 return $form;
}

The preceding code is the Form API code for the entity edit form, and the following
code defines the button submit handlers:

/**
 * Form API submit callback for the save button.
 */
function recipe_ingredient_type_form_submit(&$form, &$form_state) {
 $recipe_ingredient_type
 = entity_ui_form_submit_build_entity($form, $form_state);
 // Save and go back.
 $recipe_ingredient_type->save();
 $form_state['redirect'] = 'admin/structure/ingredients';
}

/**
 * Form API submit callback for the delete button.
 */
function recipe_ingredient_type_form_submit_delete(&$form, &$form_
state) {
 $type = $form_state['recipe_ingredient_type']->type;
 $form_state['redirect']
 = "admin/structure/ingredients/manage/$type/delete";
}

Add the following code to the top of the recipe.module file:
/**
 * Use a separate class for ingredient types so we can specify some
 * defaults modules may alter.
 */
class IngredientType extends Entity {
 public $type;
 public $label;
 public $weight = 0;

 public function __construct($values = array()) {
 parent::__construct($values, 'recipe_ingredient_type');
 }

 /**

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[97]

 * Returns whether the ingredient type is locked, thus may not be
 * deleted or renamed.
 *
 * Ingredient types provided in code are automatically treated as
 * locked, as well as any fixed ingredient type.
 */
 public function isLocked() {
 return isset($this->status) && empty($this->is_new)
 && (($this->status & ENTITY_IN_CODE)
 || ($this->status & ENTITY_FIXED));
 }

 /**
 * Overrides Entity::save().
 */
 public function save() {
 parent::save();
 // Clear field info caches such that any changes to extra fields
 // get reflected.
 field_info_cache_clear();
 }
}

/**
 * UI controller.
 */
class IngredientTypeUIController extends EntityDefaultUIController {
 /**
 * Overrides hook_menu() defaults.
 */
 public function hook_menu() {
 $items = parent::hook_menu();
 $items[$this->path]['description']
 = 'Manage ingredients, including fields.';
 return $items;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[98]

The preceding IngredientType class declaration overrides the Entity class
that we normally use to get off the ground quickly. We have implemented the
following methods:

•	 __construct(): This allows the class to be called without specifying an
entity type

•	 isLocked(): This helps the UI prevent deletion or editing
•	 save(): This flushes field information caches after the ingredient type is saved

The IngredientTypeUIController class overriding EntityDefaultUIController
class is simply an example of how to put this into place. A trivial change to the menu
item description is the only override. If you choose not to override the UI controller,
then you should remember to change the controller class directive of admin ui
to EntityDefaultUIController.

In more complicated use cases, it may be necessary to override
EntityDefaultUIController in order to achieve the following:

•	 Implement extra operations that can be performed on your entities
•	 Show more details on the entity listing pages

To complete the entity exposure, add the following code under recipe_entity_
info in recipe.module:

/**
 * Access callback for the entity API.
 */
function recipe_ingredient_access($op, $type = NULL, $account = NULL)
{
 return user_access('administer ingredients', $account);
}

/**
 * Gets an array of all ingredient types, keyed by the type name.
 *
 * @param $type_name
 * If set, the type with the given name is returned.
 * @return IngredientType[]
 * Depending whether $type is set, an array of ingredient types or
 * a single one.
 */
function recipe_ingredient_get_types($type_name = NULL) {
 $types = entity_load_multiple_by_name('recipe_ingredient_type',
isset($type_name) ? array($type_name) : FALSE);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[99]

 return isset($type_name) ? reset($types) : $types;
}

/**
 * Menu load handler.
 */
function recipe_ingredient_type_load($type_name) {
 return recipe_ingredient_get_types($type_name);
}

/**
 * Define default ingredient type configurations.
 *
 * @return
 * An array of default ingredient types, keyed by ingredient type
 * names.
 */
function recipe_default_recipe_ingredient_type() {
 $types['standard'] = new IngredientType(array(
 'type' => 'standard',
 'label' => t('Standard'),
 'weight' => 0,
 // 'status' => ENTITY_FIXED,
));
 return $types;
}

The following is some information about these functions:

•	 recipe_ingredient_access(): This is an access handler that returns TRUE
when the user has the administer ingredients permission

•	 recipe_ingredient_get_types(): This is a helper function that loads
information for all ingredient types or for a specified ingredient type

•	 recipe_ingredient_type_load(): This is a menu item load handler that is
needed for the administration UI

•	 recipe_default_recipe_ingredient_type(): This is called by the
entity module, and is an implementation of hook_default_recipe_
ingredient_type that informs Drupal about the standard ingredient type

Other modules can also implement hook_default_recipe_ingredient_type in
order to offer their own built-in ingredient types. The highlighted status directive
can be uncommented to prevent any changes to the ingredient type.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Local Entities

[100]

Change the recipe_permissions() function by adding the administer
ingredients permission declaration, so that the start of the function looks
like the following code excerpt:

function recipe_permissions() {
 return array(
 'administer ingredients' => array(
 'title' => t('Administer ingredients'),
 'description' => t('Administer ingredients system-wide.'),
),
 'export recipes' => array(
...

To check whether the standard ingredient type is activated, you can clear the caches
using Drush, and then run the print-entity Drush command in the pde module:
$ drush cc all

$ drush pe standard recipe_ingredient_type

 Entity (recipe_ingredient_type) - ID# standard:

 id : 1

 type : standard

 label : Standard

 weight : 0

 data:

 status : 2

 module : recipe

Notice here that we are using standard instead of the numeric ID of the entity.
This is necessary because we specified name instead of label in the entity keys
directive of the entity type declaration. For more information about when to use the
name instead of the numeric ID, see the documentation for entity_crud_hook_
entity_info in entity.api.php from the entity module.
You can now navigate in your browser to admin/structure/ingredients and play
around with the administration UI of ingredient types!

Summary
In this code-heavy chapter, we covered the exposure of database tables as fieldable
and non-fieldable entities. We also discussed enabling export, import, and cloning of
the entity bundle configurations.

In the next and final chapter, we expose remote data as entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities
So far, we have cooked up some rather meaty portions of Drupal entity soup. We
will finish the dish with a dollop of:

•	 Introducing the Remote Entity API
•	 Requirements for exposing a remote data source as Drupal entities
•	 Implementing a remote data source as entities in a recipe website

Introducing the Remote Entity API
Use cases may demand remote data be integrated with the Drupal site. Developers
tend to use custom built import scripts or the Feeds module to pull data into entities.
Another option would be to implement a custom entity controller class overriding
the load() and save() methods. The latter is faster to implement, but has no built-
in support for caching. Without caching, users will not see entities during Internet
routing failures, and page loading times may be longer. Once the Feeds module
is configured to import the data into a custom table, we would simply expose the
data like we did in the previous chapter. As there are resources online and books
available about using the Feeds module, it would be silly to cover it in this book.

A new option became possible with the introduction of the Remote Entity API
module. Remote Entity API is intended to reduce the amount of coding necessary
to expose remote entities to Drupal. It even caches remote data locally and, once
exposed by a hook_entity_info implementation, will integrate well with solution
modules that support EntityFieldQuery.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities

[102]

Remote Entity API provides the following benefits:

•	 Fixed entity structure: All remote entities have the same basic properties
independent of the remote data structure

•	 Remote property mapping: Exposes properties of the remote entity as
properties of the local entity

•	 Administration UI: Implements a menu item and associated handler for a
page listing remote entities with edit and delete links

•	 Numeric entity IDs: Regardless of the remote entity's primary key, numeric
entity IDs are exposed allowing full integration with most solution modules

At the time of writing, Remote Entity API is at alpha development stage, meaning
the API is susceptible to change. The code we will extend in this chapter is not
likely to change much and is written well. We will also keep our entities read-only
to simplify things. However, do stay abreast of changes in the Remote Entity API
module and check for addendums of this book.

Requirements for exposing remote
entities
To expose remote data to Drupal using the Remote Entity API module, several
requirements must be satisfied. The requirements are as follows:

•	 A web service exposing data for retrieve and index REST operations. Other
services and protocols can also be used.

•	 Connection and resource classes for the Clients module to connect to the
web service.

•	 Connection and resources configured for the web service.
•	 A database table for cached entities if caching is desired.
•	 Implementation of hook_entity_info to expose your entity to Drupal.
•	 An entity controller supporting remote entities.
•	 Custom code for caching and data import.

It's important to note that Remote Entity API does not cache remote data in a schema
identical to the remote database. Instead, the API demands a particular base schema
in which remote entity data is serialized into one field. Each entity type must have its
own base table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[103]

Implementing remote entity exposure
For the practical part of this chapter, we will expose a USDA food description list as
entities in our recipe website. We will complete a new module named usda_remote,
which depends on the clients and remote_entity modules for connection to
a remote RESTful service exposing Drupal entities using the services_entity
module. We will only concern ourselves with the client side of this setup.

You will find the usda_remote module in the sites/all/modules/customized/
usda_remote folder inside the example code you downloaded earlier. The list of files
within that folder is as follows:

•	 usda_remote.admin.inc: Contains administration UI code
•	 usda_remote.batch.inc: Batch entity import code
•	 usda_remote.clients.inc: Subclass for connection to the remote service
•	 usda_remote.info: Standard Drupal information file for a module
•	 usda_remote.install: Install file containing the schema for the database

table needed by Remote Entity API
•	 usda_remote.module: Drupal module file
•	 usda_remote.query.inc: Subclasses of RemoteEntityQuery:

USDARemoteSelectQuery, USDARemoteInsertQuery, and
USDARemoteUpdateQuery

Most code we are using is copied from the clients_ms_dynamics_soap module
available on www.drupal.org. There are some empty write-related class methods
so that interfaces are implemented and code compiles. At the time of writing, the
clients_ms_dynamics_soap module is the only publically available module using
Remote Entity API. More will surface as the module matures.

Go ahead and install the code for this chapter. During the installation, you will be
asked for a username and a password for accessing the remote service. In the first
fieldset's description, click on the link to the USDA Nutritional Database Service
registration page, create an account, and then enter those credentials into the form
before proceeding with your installation.

Let's examine or add the necessary code file-by-file to bring the entities to life on our
local site.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities

[104]

Database schema
In the usda_remote.install file, you will see the schema for the usda_food_des
database table with the following fields:

•	 eid: Entity ID field
•	 remote_id: Remote entity ID that can be textual or numeric
•	 type: Entity bundle
•	 entity_data: Serialized remote object data
•	 created: UNIX timestamp for when the entity was created
•	 changed: UNIX timestamp for when the entity was changed
•	 remote_saved: UNIX timestamp for when the entity was remotely saved
•	 needs_remote_save: Flag indicating the entity needs to be saved remotely
•	 expires: UNIX timestamp for when the entity expires
•	 deleted: Flag indicating the entity is to be deleted

All the preceding fields are required by Remote Entity API. Additional fields can be
added for your use case.

Connection code
In order to connect to a remote REST service, we must override the Clients
module's clients_connection_drupal_services_rest_7 class and implement
the ClientsRemoteEntityInterface and ClientsConnectionAdminUIInterface
interfaces. These interfaces are required for Remote Entity API to interface with
the Clients module. It's likely this connection code will not be necessary for most
connections once Remote Entity API matures.

The code in this file has been copied from clients_ms_dynamics_soap.
clients.inc in the clients_ms_dynamics_soap module. The functions copied
are: remote_entity_load(), remote_entity_save(), entity_property_
type_map(), and getRemoteEntityQuery(). Add the following lines to the
getRemoteEntityQuery() function:

switch ($query_type) {
 case 'select':
 return new USDARemoteSelectQuery($this);
 case 'insert':
 return new USDARemoteInsertQuery($this);
 case 'update':
 return new USDARemoteUpdateQuery($this);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[105]

The preceding code returns the appropriate instance of our RemoteEntityQuery
subclass, which we will discuss next. We don't need to modify entity_property_
type_map() because, at the time of writing, the remote query implementation in
Remote Entity API is still being finalized.

Remote query code
Code for remote queries can be found in the usda_remote.query.inc file. The code
is based on the clients_ms_dynamics_soap module's implementation and contains
the following subclasses:

•	 USDARemoteSelectQuery

•	 USDARemoteInsertQuery

•	 USDARemoteUpdateQuery

Only the USDARemoteSelectQuery class contains code, as we are limiting the scope
to read-only operations on the remote entities.

The execute() method has been amended to support the REST service including
the page and pagesize HTTP query string parameters supported by the index
endpoint. The latter will be used to import entities in chunks.

In the usda_remote module, you'll see usda_remote_remote_entity_query_
table_info, which is only implemented to prevent a PHP warning. It should not
be needed when Remote Entity API is released.

Entity exposure code
Inside the usda_remote module, you will see the empty usda_remote_entity_
info() function. In this function, we expose the database table we defined earlier
rather than the source entity schema. We also need additional directives for Remote
Entity API's magic.

Add the following code into the usda_remote_entity_info() function:

$info = array();
$info['usda_food_des'] = array(
 'label' => t('USDA food description'),
 'entity class' => 'Entity',
 'controller class' => 'RemoteEntityAPIDefaultController',
 'metadata controller class'
 => 'RemoteEntityAPIDefaultMetadataController',
 'base table' => 'usda_food_des',
 'fieldable' => FALSE,

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities

[106]

 'entity keys' => array(
 'id' => 'eid',
 'label' => 'long_desc',
),
 'view modes' => array(
 'full' => array(
 'label' => t('Full content'),
 'custom settings' => FALSE,
),
),
 'label callback' => 'remote_entity_entity_label',
 'uri callback' => 'entity_class_uri',
 'module' => 'usda',
 'access callback' => 'usda_remote_admin_access',
 // Enable the entity API's admin UI.
 'admin ui' => array(
 'path' => 'admin/content/usda',
 'file' => 'usda_remote.admin.inc',
 'controller class' => 'RemoteEntityEntityUIController',
),
 // Remote Entity API directives
 'remote base table' => 'usda_food_des',
 'remote entity keys' => array(
 'remote id' => 'ndb_no',
 'label' => 'long_desc',
),
);

// Setup the property map
$remote_properties = _usda_remote_remote_properties();
foreach ($info as $key => $einfo) {
 $info[$key]['property map'] =
 drupal_map_assoc(array_keys($remote_properties[$key]));
}

return $info;

In the previous entity declaration, you'll see all the variations highlighted. We need to
use different controller classes and a different label callback. After the Remote Entity
API directives comment, we have added the following additional directives:

•	 remote base table: Can be used to build remote queries or endpoint URLs
•	 remote entity keys: Maps local properties to remote identifier properties
•	 property map: A map between all remote properties and local properties

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[107]

Our property map implementation maps remote properties to local properties
with the same name. Some other exposure code defines the user permission in
usda_remote_permission and the access handler usda_remote_admin_access.

Entity metadata API integration
You'll also notice that our property map code mentioned previously refers to an
array returned by _usda_remote_remote_properties(). We had to implement
our own Entity Metadata API integration as the functionality in Remote Entity API
is unfinished at the time of writing. We add the following code to usda_remote_
entity_property_info:

$entity_types = array('usda_food_des');
$remote_properties = _usda_remote_remote_properties();

foreach ($entity_types as $entity_type) {
 $properties = &$info[$entity_type]['properties'];
 $entity_data = &$properties['entity_data'];
 $pp = &$remote_properties[$entity_type];
 $entity_data['type'] = 'remote_entity_'.$entity_type;

 foreach ($pp as $key => $pinfo) {
 $pp[$key]['label'] = $key;
 $pp[$key]['getter callback'] = 'entity_property_verbatim_get';
 }
 $entity_data['property info'] = $pp;
}

This code notifies the Entity Metadata API about the properties found in the
entity_data field storing a serialized copy of remote data. We have set the type of
entity_data in the usda_food_des entity type to remote_entity_usda_food_des.
This is so that it's not treated as a text field causing errors. The inner foreach loop
cycles through the properties of entity_data making each one accessible to wrapper
code. The inner foreach loop and the assignment line after it are optional, as Remote
Entity API automatically makes all remote properties declared in property map
available at the top-level of the entity.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities

[108]

Import and administration code
The only thing remaining is an import UI to enable an administrator to import the
remote entities. You will see a menu item declared in the usda_remote_menu()
function along with supporting code in usda_remote.admin.inc and usda_remote.
batch.inc. We set up the batch in the former file's usda_remote_import_form_
submit, and then it invokes a batch function in the latter file. The batch processing
function is usda_remote_import_data(), and it is invoked for each entity type
returned by usda_remote_entity_info().

Replace the comment in usda_remote_import_data() with the following code:

$controller = entity_get_controller($entity_type);
$query = $controller->getRemoteEntityQuery();
$query->pager['page'] = $context['sandbox']['progress'] / $query-
>pager['limit'];

try {
 $entities = $controller->executeRemoteEntityQuery($query);
 $context['sandbox']['current'] = count($entities);
 $context['sandbox']['progress'] += $context['sandbox']['current'];
}
catch (Exception $e) {
 ;
}

In the preceding code, we retrieve the entity controller, and then from it we retrieve
the RemoteEntityQuery subclass instance we implemented earlier. In line three, we
adjust the page number to match our progress then execute the query in the first line
of the try block. We could also adjust the pagesize attribute of the query's pager
property to change the number of records we retrieve.

Running
Once you have all your code in place, clear all Drupal caches. Point your browser to
admin/content/usda/import and, on that page, click on the Import button. Once
the import is complete, you'll be redirected back to the import page. Click on the List
tab (admin/content/usda) and you'll see the imported remote entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[109]

Listing of imported remote USDA food description entities

Adding write support
While write support is out of the scope for this text, a quick mention of how to do it
may help. The usda_remote.query.inc file has two write-related classes that need
some implementation:

•	 USDARemoteInsertQuery

•	 USDARemoteUpdateQuery

To give administrators a user interface for editing entities, add code to the form
handler named usda_food_des_form in the usda_remote.admin.inc file.

www.it-ebooks.info

http://www.it-ebooks.info/

Expose Remote Entities

[110]

Customization for your use case
The code that we have prepared in this chapter can be easily used as a template for
your own implementations. It must be emphasized that Remote Entity API is still in
development, and you may need to reference chapter addendums online to get your
code working with later releases of the module.

You will find in-depth information about all the supported hooks and hook
extensions of the Remote Entity API in the remote_entity.api.inc file.

Summary
In this chapter, we introduced Remote Entity API and covered the requirements
for exposing remote entities to a Drupal 7 site. We then implemented an example
exposing remote USDA food descriptions to Drupal using Remote Entity API.

This brings our Drupal 7 entity cooking adventure to an end, and together we
have consumed some light snacks along with some slow-cooked hearty stews.
Your humble author hopes you will successfully prepare many Drupal entity
dishes in the future using what you learned from this book.

That's right... "Good Codes!"

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$field_name 49
__construct() method 98
_usda_remote_remote_properties() 107

A
access callback entity 94
administration code 108
archived property 74
author property 36, 39

B
base table key directive 85
body field

about 37
format 38
safe_summary 38
safe_value 38
summary 38
value 38

body property 37
box perspective 8
bundle

about 10
information, exposing 91-94
information, storing 87-91
multiple bundles 86, 87

bundle definition entity 93
bundle directive 86
bundle keys function 92
bundle of entity 94

C
cart module 13
changed field 104
changed property 36
checkout module 13
cid property 39
code

adding 94-100
copying, to recipe module 60, 61, 80
updating 82

code snippet 19, 21
comment_body field 39
comment_body property 39
comment_count_new property 37
comment_count property 37
comment entity

about 39, 40
author property 40
node property 40

comment entity, property
author property 39
cid property 39
comment_body property 39
created property 39
edit_url property 39
homepage property 39
hostname property 39
mail property 39
name property 39
node property 39
parent property 39
status property 39
subject property 39
url property 39

www.it-ebooks.info

http://www.it-ebooks.info/

[112]

comment property 37
commerce products 13
compound type 37
connection code 104
Content Construction Kit (CCK) 11
content type

field collection, attaching 77
controller class key directive 85
created field 104
created property 36, 39
Create Retrieve Update Delete (CRUD) 10

D
data

exposing 84, 85
database schema 104
data field 89
date field 47
date (ISO format) field 47
datetime field 51, 53
date (UNIX timestamp) field 47
decimal field 47
decode option 22
deleted field 104
delete() method 21
description property 30, 40
devel module 18
dpm() function 18
Drupal

history 71
URL 103

Drupal core
bundles 12
entity type 11
fieldability 11

Drush commands 18
drush_pde_entity_delete() function 21
drush_pde_entity_update() function 21
drush_pde_print_entity() function 19
dump-entity-properties (dep) Drush

command 26

E
ECK 84
edit_url property 36, 39
eid field 104

entity
about 8
box perspective 8
bundles 10
comment entity 39, 40
exposing 83
fieldable entity 35, 36
fields 11
fields, allowing 85
file entity 26-29
interface perspective 8
introspection 18
node entity 36-39
non-fieldable 25, 26
programming, limitation 22
properties 17
structure perspective 8
term entity 40-45
types 10
use cases 12
vocabulary entity 30, 31

EntityAPIControllerExportable entity 94
Entity Class API

URL 22
entity class key directive 85
Entity Construction Kit. See ECK
entity-create (ec) Drush command 18
entity, creating

code snippet 18, 19
Drush commands 18

entity_data field 104
EntityDefaultUIController class 98
entity-delete (ed) Drush command 21
entity, deleting

code snippet 21
Drush commands 21

EntityDrupalWrapper class 16, 50
entity exposure code 105-107
entity_id() function 17
entity keys 86
EntityListWrapper class 15, 16
EntityListWrapper instance 50
entity metadata API

integrating 107
entity metadata wrapper

about 15
object, creating 16

www.it-ebooks.info

http://www.it-ebooks.info/

[113]

URL 23
using 18

EntityMetadataWrapper class API
URL 23

EntityMetadataWrapperException 50
entity_metadata_wrapper() function

about 17, 33
URL 22

entity metadata wrapper, using
create 18
delete 21
retrieve 19
update 21

entity module 9, 93
entity, property

identifying property 17
label property 17

entity_property_type_map() function 104,
105

entity-read (er) Drush command 19
entity, retrieving

code snippet 19
Drush commands 19

EntityStructureWrapper class
about 15, 50
EntityDrupalWrapper class 16

entity_translation module 13
entity, types

comment 12
file 12
node 12
term 12
user 12
vocabulary 12

entity-update (eu) Drush command 21
entity, updating

code snippet 21
Drush commands 21

entity, use cases
commerce products 13
internationalization 13
Stock-Keeping Unit (SKU) 13
user profiles 12

EntityValueWrapper class 15
EntityValueWrapper object 50
execute() method 105

expires field 104
exportable entity 94

F
Feeds module 101
fid property 27
field

about 11
allowing, on entity 85
creating 56
exporting 78, 79
exporting, to feature 58, 59
multi-value field 48-50
single-value field 48-50
structure fields 50
types 47, 48

fieldability 11
fieldable entity 35, 36
field collection

adding, to node 76
adding, to recipe node 77
archived property 74
attaching, to content type 77
code, copying to recipe module 80
code, updating 82
entities 74, 76
exporting 78, 79
field, creating 71, 72
field_name property 74
host_entity property 74
item_id property 74
recipe.module, tweaking 80, 81
revision_id property 74
url property 74

Field Collection module 71
field_create_field() function 64, 65
field_create_instance() function 64, 65
field_info_extra_fields() 64
field_item_file wrapper 51
field_item_image wrapper 51
field_item_link wrapper 51
field_name property 74
field, types

date field 47
date (ISO format) field 47
datetime field 51, 53

www.it-ebooks.info

http://www.it-ebooks.info/

[114]

date (UNIX timestamp) field 47
decimal field 47
file field 47, 51, 52
float field 47
image field 47, 51, 52
Integer field 48
link field 48, 51, 52
Long text and summary field 48
Long text field 48
Text field 48
text_with_summary field 51

file entities, wrapper property
fid property 27
mime property 27
name property 27
owner property 27
size property 27
timestamp property 27
url property 27

file entity 26-29, 94
file field 47, 51, 52
file_save_data() function 28
float field 47

G
getIdentifier() method 20
getPropertyInfo() method 18, 52
getRemoteEntityQuery() function 104

H
help command 18
hierarchy property 30
homepage property 39
host_entity property 74
hostname property 39

I
identifying property 17
image field 47, 51, 52
import 108
Ingredient name field 70
IngredientType class 98
IngredientType entity 94
IngredientTypeUIController class 98

IngredientTypeUIController entity 94
instanceof operator 49
Integer field 48
interface perspective 8
internationalization 13
isLocked() method 98
is_new property 36
item_id property 74
IteratorAggregate interface 20

L
label callback function 92
label() method 20, 50, 76, 92
label property 17
language property 36
link field 48, 51
load() method 101
locked directive 62
log property 37
Long text and summary field 48
Long text field 48

M
machine_name property 30
mail property 39
Managed files 27
mime property 27
module code

upgrading 55
module function 92
modules, dealing with entities

entity modules 9
solution modules 9

multi-value field 48-50
myproperty 22

N
name entity 94
name property 27, 30, 39, 40
needs_remote_save field 104
nid property 36
node

about 10
field collection, adding 76, 77

node_count property 41

www.it-ebooks.info

http://www.it-ebooks.info/

[115]

node entity 36-38
node entity, property

author property 36
body property 37
changed property 36
comment_count_new property 37
comment_count property 37
comment property 37
created property 36
edit_url property 36
is_new property 36
language property 36
log property 37
nid property 36
promote property 36
revision property 37
source property 37
status property 36
sticky property 36
title property 36
type property 36
url property 36
vid property 36

node property 39
non-fieldable entities 25, 26

O
owner property 27

P
pager property 108
parent property 39, 41
parents_all property 41, 42
parents property 42
path entity 94
pde_drush_print_entity() function 75
pde_entity_value() function 52, 75
pde_field_value() function 74, 76
pde module 26
pde_structure_value() function 51, 54, 55
print-entity command 74
Processing/Notes field 70
processing type 38
promote property 36
property map directive 106
property value 20

Q
Quantity field 70

R
raw() method 20
recipe content type

code, copying to recipe module 60, 61
converting, to use fields 55
fields, creating 56, 57
fields, exporting to feature 58, 59
recipe.info, tweaking 61-63
recipe.module, tweaking 61-63
recipe.module, upgrading 63

recipe_cooktime 57
recipe_default_recipe_ingredient_type()

function 99
recipe_description 56
recipe_field_default_fields() function 64
recipe_field_extra_field() function 62
recipe_field_extra_fields() function 80
recipe_form() function 63
recipe.info

tweaking 61, 62
recipe_ingredient_access() function 99
recipe_ingredient_get_types() function 99
recipe_ingredient_type_load() function 93,

99
recipe_install_fields() function 63, 65, 82
recipe.install file 31, 65
recipe_install() function 42, 67
recipe_instructions 57
recipe_load() function 63
recipe.module

code, copying 80
recipe_cooktime 57
recipe_description 56
recipe_instructions 57
recipe_notes 56
recipe_preptime 57
recipe_source 56
recipe_yield 56
recipe_yield_unit 56
tweaking 61-63, 80, 81
upgrading 63

recipe.module file 84

www.it-ebooks.info

http://www.it-ebooks.info/

[116]

recipe node
field collection, adding 77

recipe_node_info() function 62
recipe_notes 56
recipe_permissions() function 100
recipe_preptime 57
recipe_schema() function 86
recipe site vocabularies 31, 32
recipe_source 56
recipe_yield 56
recipe_yield_unit 56
remote base table directive 106
remote entity

customizing, for use case 110
exposure, implementing 103
exposure, requisites 102
implementing 103

Remote Entity API
about 101
advantages 102

remote_entity.api.inc file 110
remote entity exposure

running 108
write support, adding 109

remote entity exposure, implementing
administration code 108
code 105-107
connection node 104
database schema 104
Entity metadata API, integrating 107
importing 108
remote query code 105

remote entity keys directive 106
remote_entity_load() function 104
RemoteEntityQuery subclass 108
remote_entity_save() function 104
remote_id field 104
remote query code 105
remote_saved field 104
revision_id property 74
revision property 37

S
sanitize option 22
save() method 18, 21, 26, 98, 101
services_entity module 103

single-value field 48-50
size property 27
solution modules 9
source property 37
spaghetti code 8
status field 89
status property 27, 36, 39
sticky property 36
storage value 20
structure fields

field type 51
structure perspective 8
struct wrapper 51
subject property 39
system_retrieve_file() API function 28

T
taxonomy module 30
taxonomy_term entities 41
taxonomy_vocabulary entity 41
taxonomy_vocabulary_machine_name_

load() function 33
term_count property 30
term entity 41-45
term entity, property

description property 40
name property 40
node_count property 41
parent property 41
parents_all property 41
tid property 40
url property 41
vocabulary property 41
weight property 41

Text field 48
text_formatted wrapper 51
text property values

using 22
text_with_summary field 51
tid property 40
timestamp field 27
timestamp property 27
title property 36
type field 104
type() method 19, 51
type property 17, 36

www.it-ebooks.info

http://www.it-ebooks.info/

[117]

U
Units field 70
Unmanaged files 27
update() function 89
uri callback function 92
uri() method 92
url property 27, 36, 39, 41, 74
usda_remote.admin.inc file 103
usda_remote.batch.inc file 103
usda_remote.clients.inc file 103
usda_remote_entity_info() function 105, 108
usda_remote_import_data() function 108
usda_remote.info file 103
USDARemoteInsertQuery class 105, 109
usda_remote.install file 103, 104
usda_remote_menu() function 108, 110
usda_remote module 103
usda_remote.module file 103
usda_remote.query.inc file 103, 105, 109
USDARemoteSelectQuery class 105
USDARemoteUpdateQuery class 105, 109
use cases

about 12, 13
customizing, for remote entity 110

user profiles 12

V
value() function 37, 38
value() method 19-22, 50, 53
vid property 30, 36
vocabularies

cuisine 31
difficulty 31

vocabulary entity 30, 31
vocabulary entity, wrapper property

description property 30
machine_name property 30
name property 30
term_count property 30
vid property 30

vocabulary property 41

W
weight property 41
wrapper type

field_item_file wrapper 51
field_item_image wrapper 51
field_item_link wrapper 51
struct wrapper 51
text_formatted wrapper 51

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Programming Drupal 7 Entities

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Drupal 7 Multilingual Sites
ISBN: 978-1-84951-818-5 Paperback: 140 pages

A hands-on, practical guide for configuring your
Drupal 7 website to handle all languages for your
site users

1.	 Prepare your Drupal site to handle content in
different languages easily.

2.	 Apply the numerous multilingual modules
to your Drupal site and configure it for any
number of different languages.

3.	 Organize the multilingual pieces into logical
areas for easier handling.

Drupal 7 Multi-sites Configuration
ISBN: 978-1-84951-800-0 Paperback: 100 pages

Run multiple websites from a single instance of
Drupal 7

1.	 Prepare your server for hosting multiple sites.

2.	 Configure and install several sites on one
instance of Drupal.

3.	 Manage and share themes and modules across
the multi-site configuration.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating to Drupal 7
ISBN: 978-1-78216-054-0 Paperback: 158 pages

Learn how to quickly and efficiently migrate content into
Drupal 7 from a variety of sources including Drupal 6
using automated migration and import processes

1.	 Learn how to import content and data into
your Drupal 7 site from other websites, content
management systems, and databases.

2.	 Upgrade your Drupal 6 site to Drupal 7 and
migrate your CCK based content into the
Drupal 7 fields based framework.

3.	 Use modules that will automate the import
and migration process including the Feeds and
Migrate modules.

Instant Drupal Rules How-to
ISBN: 978-1-84951-998-4 Paperback: 74 pages

Discover the power of the Rules framework to turn
your Drupal 7 installation into an action-based,
interactive application

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Leverage the power of Rules and Views Bulk
Operations.

3.	 Re-use configurations using Components.

4.	 Create your own Events, Conditions and
Actions.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Entities
	Introducing entities
	Entity and solution modules
	Introducing entity types, bundles, and fields
	Types
	Bundles
	Fields
	Drupal core entity structure

	Powerful entity use cases
	User profiles
	Internationalization
	Commerce products

	Our use case
	Summary

	Chapter 2: Developing with Entity Metadata Wrappers
	Introducing entity metadata wrappers
	Creating an entity metadata wrapper object
	Standard entity properties
	Entity introspection
	Using an entity metadata wrapper
	Create
	Drush commands
	Code snippet

	Retrieve
	Drush commands
	Code snippet

	Update
	Drush commands
	Code snippet

	Delete
	Drush commands
	Code snippet

	Safely using text property values
	Self-imposed limitation of entity programming
	References
	A note about EntityFieldQuery
	Summary

	Chapter 3: Developing with Non-fieldable Entities
	What are non-fieldable entities?
	File entities
	Vocabulary entities
	Recipe site vocabularies
	Summary

	Chapter 4: Developing with Fieldable Entities
	What are fieldable entities?
	Node entities
	Comment entities
	Term entities
	Summary

	Chapter 5: Developing with Fields
	Field types
	Single-value and multi-value fields
	Structure fields
	Field type-specific code
	File and image fields
	Link fields
	Datetime fields
	Putting it all together

	Converting the recipe content type to use fields
	Creating fields
	Exporting fields to a feature
	Copying the code to the recipe module
	Tweaking recipe.module and recipe.info
	Upgrading recipe module

	Summary

	Chapter 6: Developing with Field Collections
	Before Drupal 7
	Creating a field collection field
	Field collection entities
	Adding a field collection to a node
	Attaching a field collection to a content type
	Exporting field collection and fields
	Copying the code to therecipe module
	Tweaking recipe.module
	Updating code is unnecessary

	Summary

	Chapter 7: Expose Local Entities
	Motivation for exposing entities
	Fast track your data exposure
	Allow fields on your entity
	Give it multiple bundles
	Administration interface and exportability
	Storing bundle information
	Exposing bundle information and handling access rights
	Adding the support code

	Summary

	Chapter 8: Expose Remote Entities
	Introducing the Remote Entity API
	Requirements for exposing remote entities
	Implementing remote entity exposure
	Database schema
	Connection code
	Remote query code
	Entity exposure code
	Entity metadata API integration
	Import and administration code

	Running
	Adding write support
	Customization for your use case
	Summary

	Index

PostgreSQL Server
Programming

Extend PostgreSQL and integrate the database layer into
your development framework

Hannu Krosing

Jim Mlodgenski

Kirk Roybal

BIRMINGHAM - MUMBAI

PostgreSQL Server Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-698-3

www.packtpub.com

Cover Image by Hannu Krosing (hannu@2ndQuadrant.com)

Credits

Authors
Hannu Krosing

Jim Mlodgenski

Kirk Roybal

Reviewer
Gabriele Bartolini

Acquisition Editor
Sarah Cullington

Lead Technical Editor
Susmita Panda

Technical Editors
Veronica Fernandes

Vaibhav Pawar

Kirti Pujari

Amit Ramadas

Project Coordinator
Shraddha Vora

Proofreader
Joel T. Johnson

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Authors

Hannu Krosing was a PostgreSQL user before it was rewritten to use SQL as its main
query language in 1995. So, he has both the historic perspective of its development and
almost 20 years of experience using it for solving various real-life problems.

Hannu was the first Database Administrator and Database Architect at Skype, where he
invented the sharding language PL/Proxy that allows scaling the user database to work
with billions of users.

Since leaving Skype at the end of 2006—about a year after it was bought up by eBay—Hannu
has been working as a PostgreSQL consultant with 2ndQuadrant, the premier PostgreSQL
consultancy with global reach and local presence in most of the world.

Hannu has co-authored another Packt Publishing book, PostgreSQL 9 Administration
Cookbook, together with one of the main PostgreSQL developers, Simon Riggs.

I want to sincerely thank my wife Evelyn for her support while writing this
book.

Jim Mlodgenski is the CTO of OpenSCG, a professional services company focused on
leveraging open source technologies for strategic advantage. He was formerly the CEO of
StormDB, a database cloud company focused on horizontal scalability. Prior to StormDB, Jim
held deeply technical roles at Cirrus Technology, Inc., EnterpriseDB, and Fusion Technologies.

Jim is also a fervent advocate of PostgreSQL. He is a member of the board of the United
States PostgreSQL Association, as well as being a part of the organizing teams of the New
York PostgreSQL User Group and Philadelphia PostgreSQL User Groups.

Kirk Roybal has been active in the PostgreSQL community since 1998. He has helped to
organize user groups in Houston, Dallas, and Bloomington, IL. He has mentored many junior
database administrators and provided cross training for senior database engineers. He has
provided solutions using PostgreSQL for reporting, business intelligence, data warehousing,
applications, and development support.

Kirk saw the value of PostgreSQL when the first small business customer asked for a web
application. At the time, competitive database products were either extremely immature, or
cost prohibitive. Kirk has stood by the choice of PostgreSQL for many years now. His expertise
is founded on keeping up with features and capabilities as they have become available.

Writing a book has been a unique experience for me. Many people fantasize
about it, few start one, and even fewer get to publication. I am proud to be
part of a team that actually made it to the book shelf (itself an diminishing
breed). Thank you Sarah Cullington from Packt Publishing for giving me a
chance to participate in the project. I imagine that the PostgreSQL community
will be better served by this information, and I hope that they receive this as a
reward for the time that they have invested in me over the years.

A book only has the value that the readers give it. Thank you to the
PostgreSQL community for all of the technical, personal, and professional
development help you have given me. The PostgreSQL community is a
great bunch of people, and I have enjoyed the company of many of them.
I hope to contribute more to this project in the future, and I hope you find
my contributions as valuable as I find yours.

Thank you to my family. Firstly, for giving me a reason to succeed. Also,
thank you for listening to the gobbledygook and nodding appreciatively.
Have you ever had your family ask you what you were doing, and answered
with a function? Try it. No, then again, don't try it. They may just have you
involuntarily checked in somewhere.

About the Reviewer

Gabriele Bartolini has been a long time open-source programmer and has been writing
Linux/Unix applications in C and C++ for over 10 years, specializing in search engines and
web analytics with large databases.

Gabriele has a degree in Statistics from the University of Florence. His areas of expertise are
data mining and data warehousing, having worked on web traffic analysis in Australia and Italy.

Gabriele is a consultant with 2ndQuadrant and an active member of the international
PostgreSQL community.

Gabriele currently lives in Prato, a small but vibrant city located in the northern part of
Tuscany, Italy. His second home is Melbourne, Australia, where he has studied at Monash
University and worked in the ICT sector.

His hobbies include calcio (football or soccer, depending on which part of the world you come
from) and playing his Fender Stratocaster electric guitar.

Thanks to my family, in particular Cathy who encourages always something
new to learn.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: What Is a PostgreSQL Server?	 7

Why program in the server?	 9
Using PL/pgSQL for integrity checks	 10

About this book's code examples	 12
Switching to the expanded display	 13

Moving beyond simple functions	 14
Data comparisons using operators	 14

Managing related data with triggers	 16
Auditing changes	 19
Data cleaning	 25
Custom sort orders	 26
Programming best practices	 27

KISS – keep it simple stupid	 27
DRY – don't repeat yourself	 28
YAGNI – you ain't gonna need it	 28
SOA – service-oriented architecture	 29
Type extensibility	 29

On caching	 30
Wrap up – why program in the server?	 31

Performance	 31
Ease of maintenance	 32
Simple ways to tighten security	 32

Summary	 32
Chapter 2: Server Programming Environment	 33

Cost of acquisition	 34
Availability of developers	 35
Licensing	 36

Table of Contents

[ii]

Predictability	 37
Community	 37
Procedural languages	 38

Platform compatibility	 39
Application design	 40

Databases are considered harmful	 40
Encapsulation	 41
What does PostgreSQL offer?	 41
Data locality	 42

More basics	 43
Transactions	 43
General error reporting and error handling	 44
User-defined functions (UDF)	 44
Other parameters	 46
More control	 46

Summary	 47
Chapter 3: Your First PL/pgSQL Function	 49

Why PL/pgSQL?	 50
Structure of a PL/pgSQL function	 50

Accessing function arguments	 51
Conditional expressions	 53

Loops with counters	 58
Looping through query results	 59
PERFORM versus SELECT	 62

Returning a record	 63
Acting on function results	 66
Summary	 67

Chapter 4: Returning Structured Data	 69
Sets and arrays	 69
Returning sets	 70

Returning a set of integers	 70
Using a set-returning function	 71

Returning rows from a function	 72
Functions based on views	 73
OUT parameters and records	 78

OUT parameters	 78
Returning records	 78
Using RETURNS TABLE	 80
Returning with no predefined structure	 81
Returning SETOF ANY	 83
Variadic argument lists	 85

Table of Contents

[iii]

Summary of RETURN SETOF variants	 86
Returning cursors	 86

Iterating over cursors returned from another function	 88
Wrap up of functions returning a cursor(s)	 90

Other ways to work with structured data	 90
Complex data types for modern world – XML and JSON	 90
XML data type and returning data as XML from functions	 91
Returning data in the JSON format	 93

Summary	 96
Chapter 5: PL/pgSQL Trigger Functions	 97

Creating the trigger function	 97
Creating the trigger	 98

Simple "Hey, I'm called" trigger	 98
The audit trigger	 102
Disallowing DELETE	 104
Disallowing TRUNCATE	 106
Modifying the NEW record	 106

Timestamping trigger	 107
Immutable fields trigger	 108
Controlling when a trigger is called	 109

Conditional trigger	 110
Trigger on specific field changes	 111

Visibility	 111
And most importantly – use triggers cautiously!	 112

Variables passed to the PL/pgSQL TRIGGER function	 112
Summary	 113

Chapter 6: Debugging PL/pgSQL	 115
''Manual'' debugging with RAISE NOTICE	 116

Throwing exceptions	 118
Logging to a file	 120

Advantages of RAISE NOTICE	 121
Disadvantages of RAISE NOTICE	 122

Visual debugging	 122
Getting the debugger installed	 122
Installing pgAdmin3	 122
Using the debugger	 123

Advantages of the debugger	 124
Disadvantages of the debugger	 125

Summary	 125

Table of Contents

[iv]

Chapter 7: Using Unrestricted Languages	 127
Are untrusted languages inferior to trusted ones?	 127
Will untrusted languages corrupt the database?	 128
Why untrusted?	 129

Why PL/Python?	 129
Quick introduction to PL/Python	 130

A minimal PL/Python function	 130
Data type conversions	 131
Writing simple functions in PL/Python	 132

A simple function	 132
Functions returning a record	 133
Table functions	 135

Running queries in the database	 136
Running simple queries	 136
Using prepared queries	 137
Caching prepared queries	 138

Writing trigger functions in PL/Python	 138
Exploring the inputs of a trigger	 140
A log trigger	 141

Constructing queries	 144
Handling exceptions	 145
Atomicity in Python	 147
Debugging PL/Python	 148

Using plpy.notice() for tracking the function's progress	 148
Using assert	 150
Redirecting sys.stdout and sys.stderr	 150

Thinking out of the "SQL database server" box	 152
Generating thumbnails when saving images	 152
Sending an e-mail	 153

Summary	 154
Chapter 8: Writing Advanced Functions in C	 155

Simplest C function – return (a + b)	 156
add_func.c	 156

Version 0 call conventions	 158
Makefile	 158
CREATE FUNCTION add(int, int)	 160
add_func.sql.in	 160
Summary for writing a C function	 161

Adding functionality to add(int, int)	 162
Smart handling of NULL arguments	 162
Working with any number of arguments	 164

Basic guidelines for writing C code	 170
Memory allocation	 170

Table of Contents

[v]

Use palloc() and pfree()	 171
Zero-fill the structures	 171
Include files	 171
Public symbol names	 172

Error reporting from C functions	 172
"Error" states that are not errors	 173
When are messages sent to the client	 174

Running queries and calling PostgreSQL functions	 174
Sample C function using SPI	 175
Visibility of data changes	 177
More info on SPI_* functions	 177

Handling records as arguments or returned values	 177
Returning a single tuple of a complex type	 179
Extracting fields from an argument tuple	 181
Constructing a return tuple	 181
Interlude – what is Datum	 182
Returning a set of records	 183

Fast capturing of database changes	 186
Doing something at commit/rollback	 187
Synchronizing between backends	 187
Additional resources for C	 188
Summary	 189

Chapter 9: Scaling Your Database with PL/Proxy	 191
Simple single-server chat	 191
Dealing with success – splitting tables over multiple databases	 199

What expansion plans work and when	 199
Moving to a bigger server	 199
Master-slave replication – moving reads to slave	 199
Multimaster replication	 200

Data partitioning across multiple servers	 200
Splitting the data	 201

PL/Proxy – the partitioning language	 204
Installing PL/Proxy	 204
PL/Proxy language syntax	 204
CONNECT, CLUSTER, and RUN ON	 205
SELECT and TARGET	 206
SPLIT – distributing array elements over several partitions	 207
Distribution of data	 208
Configuring PL/Proxy cluster using functions	 209
Configuring PL/Proxy cluster using SQL/MED	 211

Moving data from the single to the partitioned database	 212
Summary	 213

Table of Contents

[vi]

Chapter 10: Publishing Your Code as PostgreSQL Extensions	 215
When to create an extension	 215
Unpackaged extensions	 217
Extension versions	 217
The .control file	 218
Building an extension	 219
Installing an extension	 221
Publishing your extension	 222

Introduction to the PostgreSQL Extension Network	 222
Signing up to publish your extension	 222
Creating an extension project the easy way	 225
Providing the metadata about the extension	 226
Writing your extension code	 230
Creating the package	 231
Submitting the package to PGXN	 231

Installing an extension from PGXN	 234
Summary	 235

Index	 237

Preface
PostgreSQL is so much more than a database server. In fact, it could even be seen
as an application development framework, with the added bonuses of transaction
support, massive data storage, journaling, recovery, and a host of other features that
the PostgreSQL engine provides. With proper knowledge in hand, you will be able
to respond to the current demand for advanced PostgreSQL skills in a lucrative and
booming market.

This book will take you from learning the basic parts of a PostgreSQL function through
writing them in languages other than the built-in PL/pgSQL. You will see how to
create libraries of useful code, group them into even more useful components, and
distribute them to the community. You will see how to extract data from a multitude of
foreign data sources, extend PostgreSQL to do it natively, and you can do all of this in
a nifty debugging interface that will allow you to do it efficiently and with reliability.

What this book covers
Chapter 1, What Is a PostgreSQL Server?, introduces PostgreSQL's programming
capabilities. It describes server programming and some of the real-world use cases
that can leverage this technique.

Chapter 2, Server Programming Environment, discusses the PostgreSQL environment.
It makes a case for why someone would choose to program in PostgreSQL covering
some of PostgreSQL's business and technical advantages.

Chapter 3, Your First PL/pgSQL Function, introduces the PL/pgSQL stored procedure
language. The basic structure of a function and some of the key building blocks
are covered.

Chapter 4, Returning Structured Data, builds on the introduction to PL/pgSQL and
shows how to return complex data back to an application. Several different methods
are used and the pros and cons of each method is discussed.

Preface

[2]

Chapter 5, PL/pgSQL Trigger Functions, explores executing some server-side logic
based on events occurring in the database. The concept of triggers is introduced
and some use cases are discussed.

Chapter 6, Debugging PL/pgSQL, explores how server-side logic can be debugged.
It starts with simple log-based notifications and builds to using an interactive
graphical debugger.

Chapter 7, Using Unrestricted Languages, looks at writing server-side code in languages
other than PL/pgSQL. It uses Python as the language of choice and covers reaching
outside the database from a function.

Chapter 8, Writing Advanced Functions in C, provides an in-depth look at extending
PostgreSQL with native C code. Several detailed examples are used to show the
fundamental concepts of adding native PostgreSQL capabilities.

Chapter 9, Scaling your Database with PL/Proxy, covers another stored procedure
language that allows PostgreSQL to expand beyond a single physical server. It
discusses some techniques on how to split data to scale effectively.

Chapter 10, Publishing Your Code as PostgreSQL Extensions, discusses the PostgreSQL
Extension Network and covers publishing a module out to the open source community.

What you need for this book
To follow along with the samples in this book, you will need the following software:

•	 Ubuntu 12.04 LTS
•	 PostgreSQL 9.2 Server or a newer version

Who this book is for
PostgreSQL Server Programming is for moderate to advanced PostgreSQL database
professionals. To get the best understanding of this book, you should have a general
experience in writing SQL, a basic idea of query tuning, and some coding experience
in a language of your choice.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You can normally tell which type you're
seeing by differences like this, whether you're seeing rows or RECORD."

A block of code is set as follows:

CREATE FUNCTION mid(varchar, integer, integer) RETURNS varchar
AS $$
BEGIN
 RETURN substring($1,$2,$3);
END;
$$LANGUAGE plpgsql;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

CREATE TRIGGER disallow_pk_change
AFTER UPDATE OF id ON table_with_pk_id
FOR EACH ROWEXECUTE PROCEDURE cancel_op();

Any command-line input or output is written as follows:

hannu=# select get_new_messages('50000');

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the link Upload a Distribution."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

What Is a PostgreSQL
Server?

If you think that a PostgreSQL server is just a storage system, and the only way
to communicate with it is by executing SQL statements, you are limiting yourself
tremendously. That is using just a tiny part of the database's features.

A PostgreSQL server is a powerful framework that can be used for all kinds of data
processing, and even some non-data server tasks. It is a server platform that allows
you to easily mix and match functions and libraries from several popular languages.
Consider this complicated, multi-language sequence of work:

1.	 Call a string parsing function in Perl.
2.	 Convert the string to XSLT and process the result using JavaScript.
3.	 Ask for a secure stamp from an external time-stamping service such as

www.guardtime.com, using their SDK for C.
4.	 Write a Python function to digitally sign the result.

This can be implemented as a series of simple function calls using several of the
available server programming languages. The developer needing to accomplish all
this work can just call a single PostgreSQL function without having to be aware of
how the data is being passed between languages and libraries:

SELECT convert_to_xslt_and_sign(raw_data_string);

What Is a PostgreSQL Server?

[8]

In this book, we will discuss several facets of PostgreSQL server programming.
PostgreSQL has all of the native server-side programming features available in
most larger database systems such as triggers, automated actions invoked
automatically each time data is changed. But it has uniquely deep abilities to
override the built-in behavior down to very basic operators. Examples of this
customization include the following.

Writing User-defined functions (UDF) in C for carrying out complex computations:

•	 Add complicated constraints to make sure that data in the server
meets guidelines.

•	 Create triggers in many languages to make related changes to other
tables, log the actions, or forbid the action to happen if it does not
meet certain criteria.

•	 Define new data types and operators in the database.
•	 Use the geography types defined in the PostGIS package.
•	 Add your own index access methods for either existing or new data types,

making some queries much more efficient.

What sort of things can you do with these features? There are limitless possibilities,
such as the ones listed as follows:

•	 Write data extractor functions to get just the interesting parts from structured
data, such as XML or JSON, without needing to ship the whole, possibly
huge, document to the client application.

•	 Process events asynchronously, like sending mail without slowing down the
main application. You could create a mail queue for changes to user info,
populated by a trigger. A separate mail-sending process can consume this
data whenever it's notified by an application process.

The rest of this chapter is presented as a series of descriptions of common data
management tasks showing how they can be solved in a robust and elegant way
via server programming.

The samples in this chapter are all tested to work, but they come with minimal
commentary. They are here just to show you various things server programming can
accomplish. The techniques described will be explained thoroughly in later chapters.

Chapter 1

[9]

Why program in the server?
Developers program their code in a number of different languages and it could be
designed to run just about anywhere. When writing an application, some people
follow the philosophy that as much of the logic as possible for the application,
should be pushed to the client. We see this in the explosion of applications
leveraging JavaScript inside browsers. Others like to push the logic into the middle
tier with an application server handling the business rules. These are all valid ways
to design an application, so why would you want to program in the database server?

Let's start with a simple example. Many applications include a list of customers who
have a balance in their account. We'll use this sample schema and data:

CREATE TABLE accounts(owner text, balance numeric);
INSERT INTO accounts VALUES ('Bob',100);
INSERT INTO accounts VALUES ('Mary',200);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

When using a database, the most common way to interact with it is to use SQL
queries. If you want to move 14 dollars from Bob's account to Mary's account,
with simple SQL it would look like this:

UPDATE accounts SET balance = balance - 14.00 WHERE owner = 'Bob';
UPDATE accounts SET balance = balance + 14.00 WHERE owner = 'Mary';

But you have to also make sure that Bob actually has enough money (or credit) on
his account. It's also important that if anything fails then none of the transactions
happen. In an application program, the preceding code snippet becomes:

BEGIN;
SELECT amount FROM accounts WHERE owner = 'Bob' FOR UPDATE;
-- now in the application check that the amount is actually bigger
than 14
UPDATE accounts SET amount = amount - 14.00 WHERE owner = 'Bob';
UPDATE accounts SET amount = amount + 14.00 WHERE owner = 'Mary';
COMMIT;

What Is a PostgreSQL Server?

[10]

But did Mary actually have an account? If she did not, the last UPDATE will succeed
by updating zero rows. If any of the checks fail, you should do a ROLLBACK instead
of COMMIT. Once you have done all this for all the clients that transfer money, a
new requirement will invariably arrive. Perhaps, the minimum amount that can be
transferred is now 5.00. You will need to revisit all your code in all your clients again.

So what can you do to make all of this more manageable, more secure, and more
robust? This is where server programming, executing code on the database server
itself, can help. You can move the computations, checks, and data manipulations
entirely into a User-defined function (UDF) on the server. This does not just ensure
that you have only one copy of operation logic to manage, but also makes things faster
by not needing several round-trips between client and server. If required, you can also
make sure that only as much information as needed is given out of the database. For
example, there is no business for most client applications to know how much money
Bob has on his account. Mostly, they only need to know if there is enough money to
make the transfer, or more to the point, if the transaction succeeded.

Using PL/pgSQL for integrity checks
PostgreSQL includes its own programming language named PL/pgSQL that
is aimed to integrate easily with SQL commands. PL stands for programming
language, and this is just one of the many languages available for writing server
code. pgSQL is shorthand for PostgreSQL.

Unlike basic SQL, PL/pgSQL includes procedural elements, like the ability to use
if/then/else statements and loops. You can easily execute SQL statements, or even
loop over the result of a SQL statement in the language.

The integrity checks needed for the application can be done in a PL/pgSQL function
which takes three arguments: names of the payer and recipient, and the amount to
pay. This sample also returns the status of the payment:

CREATE OR REPLACE FUNCTION transfer(
 i_payer text,
 i_recipient text,
 i_amount numeric(15,2))
RETURNS text
AS
$$
DECLARE
 payer_bal numeric;
BEGIN
 SELECT balance INTO payer_bal
 FROM accounts

Chapter 1

[11]

 WHERE owner = i_payer FOR UPDATE;
 IF NOT FOUND THEN
 RETURN 'Payer account not found';
 END IF;
 IF payer_bal < i_amount THEN
 RETURN 'Not enough funds';
 END IF;

 UPDATE accounts
 SET balance = balance + i_amount
 WHERE owner = i_recipient;
 IF NOT FOUND THEN
 RETURN 'Recipient does not exist';
 END IF;

 UPDATE accounts
 SET balance = balance - i_amount
 WHERE owner = i_payer;
 RETURN 'OK';
END;
$$ LANGUAGE plpgsql;

Here are a few examples of using this function, assuming you haven't executed the
previously proposed UPDATE statements yet:

postgres=# SELECT * FROM accounts;
 owner | balance
-------+---------
 Bob | 100
 Mary | 200
(2 rows)

postgres=# SELECT * FROM transfer('Bob','Mary',14.00);
 transfer

 OK
(1 row)

postgres=# SELECT * FROM accounts;
 owner | balance
-------+---------
 Mary | 214.00
 Bob | 86.00
(2 rows)

What Is a PostgreSQL Server?

[12]

Your application would need to check the return code and decide how to handle
these errors. As long as it was written to reject any unexpected value, you could
extend this function to do more checking, such as minimum transferrable amount,
and be sure it would be prevented. There are three errors this can return:

postgres=# SELECT * FROM transfer('Fred','Mary',14.00);
 transfer

 Payer account not found
(1 row)

postgres=# SELECT * FROM transfer('Bob','Fred',14.00);
 transfer

 Recipient does not exist
(1 row)

postgres=# SELECT * FROM transfer('Bob','Mary',500.00);
 transfer

 Not enough funds
(1 row)

For these checks to always work, you would need to make all transfer operations go
through the function, rather than manually changing the values with SQL statements.

About this book's code examples
The sample output shown here has been created with PostgreSQL's psql utility,
usually running on a Linux system. Most of the code will work the same way if you
are using a GUI utility like pgAdmin3 to access the server instead. When you see lines
like this:

postgres=# SELECT 1;

The postgres=# part is the prompt shown by the psql command.

Examples in this book have been tested using PostgreSQL 9.2. They will probably
work on PostgreSQL version 8.3 and later. There have not been many major changes
to how server programming happens in the last few versions of PostgreSQL. The
syntax has become stricter over time to reduce the possibility of mistakes in server
programming code. Due to the nature of those changes, most code from newer
versions will still run on the older ones, unless it uses very new features. However,
the older code can easily fail to run due to one of the newly-enforced restrictions.

Chapter 1

[13]

Switching to the expanded display
When using the psql utility to execute a query, PostgreSQL normally outputs the
result using vertically aligned columns:

$ psql -c "SELECT 1 AS test"
 test

 1
(1 row)

$ psql
psql (9.2.1)
Type "help" for help.

postgres=# SELECT 1 AS test;
 test

 1
(1 row)

You can tell when you're seeing a regular output because it will end up showing the
number of rows.

This type of output is hard to fit into the text of a book like this. It's easier to
print the output from what the program calls the expanded display, which
breaks each column into a separate line. You can switch to expanded using
either the -x command-line switch, or by sending \x to the psql program.
Here is an example of using each:

$ psql -x -c "SELECT 1 AS test"
-[RECORD 1]
test | 1

$ psql
psql (9.2.1)
Type "help" for help.

postgres=# \x
Expanded display is on.
postgres=# SELECT 1 AS test;
-[RECORD 1]
test | 1

What Is a PostgreSQL Server?

[14]

Notice how the expanded output doesn't show the row count, and it numbers
each output row. To save space, not all of the examples in the book will show the
expanded output being turned on. You can normally tell which type you're seeing
by differences like this, whether you're seeing rows or RECORD. The expanded mode
will be normally preferred when the output of the query is too wide to fit into the
available width of the book.

Moving beyond simple functions
Server programming can mean a few different things. Server programming is not
just writing server functions. There are many other things you can do in the server
which can be considered programming.

Data comparisons using operators
For more complex tasks you can define your own types, operators, and casts from
one type to another, letting you actually compare apples and oranges.

As shown in the next example, you can define the type, fruit_qty, for
fruit-with-quantity and then teach PostgreSQL to compare apples and oranges,
say to make one orange to be worth 1.5 apples and convert apples to oranges:

postgres=# CREATE TYPE FRUIT_QTY as (name text, qty int);

postgres=# SELECT '("APPLE", 3)'::FRUIT_QTY;
 fruit_quantity

 (APPLE,3)
(1 row)

CREATE FUNCTION fruit_qty_larger_than(left_fruit FRUIT_QTY,
 right_fruit FRUIT_QTY)
RETURNS BOOL
AS $$
BEGIN
 IF (left_fruit.name = 'APPLE' AND right_fruit.name = 'ORANGE')
 THEN
 RETURN left_fruit.qty > (1.5 * right_fruit.qty);
 END IF;
 IF (left_fruit.name = 'ORANGE' AND right_fruit.name = 'APPLE')
 THEN

Chapter 1

[15]

 RETURN (1.5 * left_fruit.qty) > right_fruit.qty;
 END IF;
 RETURN left_fruit.qty > right_fruit.qty;
END;
$$
LANGUAGE plpgsql;

postgres=# SELECT fruit_qty_larger_than('("APPLE", 3)'::FRUIT_
QTY,'("ORANGE", 2)'::FRUIT_QTY);
 fruit_qty_larger_than

 f
(1 row)

postgres=# SELECT fruit_qty_larger_than('("APPLE", 4)'::FRUIT_
QTY,'("ORANGE", 2)'::FRUIT_QTY);
 fruit_qty_larger_than

 t
(1 row)

CREATE OPERATOR > (
 leftarg = FRUIT_QTY,
 rightarg = FRUIT_QTY,
 procedure = fruit_qty_larger_than,
 commutator = >
);

 postgres=# SELECT '("ORANGE", 2)'::FRUIT_QTY > '("APPLE", 2)'::FRUIT_
QTY;
 ?column?

 t
(1 row)

postgres=# SELECT '("ORANGE", 2)'::FRUIT_QTY > '("APPLE", 3)'::FRUIT_
QTY;
 ?column?

 f
(1 row)

What Is a PostgreSQL Server?

[16]

Managing related data with triggers
Server programming can also mean setting up automated actions (triggers), so
that some operations in the database cause some other things to happen as well.
For example, you can set up a process where making an offer on some items is
automatically reserved to them in the stock table.

So let's create a fruit stock table:

CREATE TABLE fruits_in_stock (
 name text PRIMARY KEY,
 in_stock integer NOT NULL,
 reserved integer NOT NULL DEFAULT 0,
 CHECK (in_stock between 0 and 1000),
 CHECK (reserved <= in_stock)
);

The CHECK constraints make sure that some basic rules are followed: you can't have
more than 1000 fruits in stock (they'll probably go bad), you can't have negative
stock, and you can't reserve more than what you have.

CREATE TABLE fruit_offer (
 offer_id serial PRIMARY KEY,
 recipient_name text,
 offer_date timestamp default current_timestamp,
 fruit_name text REFERENCES fruits_in_stock,
 offered_amount integer
);

The offer table has an ID for the offer (so you can distinguish between offers later),
recipient, date, offered fruit name, and offered amount.

For automating the reservation management, you first need a TRIGGER function,
which implements the management logic:

CREATE OR REPLACE FUNCTION reserve_stock_on_offer () RETURNS trigger
AS $$
 BEGIN
 IF TG_OP = 'INSERT' THEN
 UPDATE fruits_in_stock
 SET reserved = reserved + NEW.offered_amount
 WHERE name = NEW.fruit_name;
 ELSIF TG_OP = 'UPDATE' THEN
 UPDATE fruits_in_stock
 SET reserved = reserved - OLD.offered_amount
 + NEW.offered_amount

Chapter 1

[17]

 WHERE name = NEW.fruit_name;
 ELSIF TG_OP = 'DELETE' THEN
 UPDATE fruits_in_stock
 SET reserved = reserved - OLD.offered_amount
 WHERE name = OLD.fruit_name;
 END IF;
 RETURN NEW;
 END;
$$ LANGUAGE plpgsql;

You have to tell PostgreSQL to call this function each and every time the offer
row is changed:

CREATE TRIGGER manage_reserve_stock_on_offer_change
AFTER INSERT OR UPDATE OR DELETE ON fruit_offer
 FOR EACH ROW EXECUTE PROCEDURE reserve_stock_on_offer();

After this we are ready to test the functionality. First, we will add some fruit to
our stock:

INSERT INTO fruits_in_stock(name,in_stock)

Then, we check that stock (this is using the expanded display):

postgres=# \x
Expanded display is on.
postgres=# SELECT * FROM fruits_in_stock;
-[RECORD 1]----
name | APPLE
in_stock | 500
reserved | 0
-[RECORD 2]----
name | ORANGE
in_stock | 500
reserved | 0

Next, let's make an offer of 100 apples to Bob:

postgres=# INSERT INTO fruit_offer(recipient_name,fruit_name,offered_
amount) VALUES('Bob','APPLE',100);
INSERT 0 1
postgres=# SELECT * FROM fruit_offer;
-[RECORD 1]--+---------------------------
offer_id | 1
recipient_name | Bob
offer_date | 2013-01-25 15:21:15.281579
fruit_name | APPLE

What Is a PostgreSQL Server?

[18]

offered_amount | 100

postgres=# SELECT * FROM fruits_in_stock;
-[RECORD 1]----
name | ORANGE
in_stock | 500
reserved | 0
-[RECORD 2]----
name | APPLE
in_stock | 500
reserved | 100

On checking the stock we see that indeed 100 apples are reserved:

postgres=# SELECT * FROM fruits_in_stock;
-[RECORD 1]----
name | ORANGE
in_stock | 500
reserved | 0
-[RECORD 2]----
name | APPLE
in_stock | 500
reserved | 100

If we change the offered amount, the reservation follows:

postgres=# UPDATE fruit_offer SET offered_amount = 115 WHERE offer_id
= 1;
UPDATE 1
postgres=# SELECT * FROM fruits_in_stock;
-[RECORD 1]----
name | ORANGE
in_stock | 500
reserved | 0
-[RECORD 2]----
name | APPLE
in_stock | 500
reserved | 115

We also get some extra benefits. First, because of the constraint on the stock table,
you can't sell the reserved apples:

postgres=# UPDATE fruits_in_stock SET in_stock = 100 WHERE name =
'APPLE';
ERROR: new row for relation "fruits_in_stock" violates check
constraint "fruits_in_stock_check"
DETAIL: Failing row contains (APPLE, 100, 115).

Chapter 1

[19]

More interestingly, you also can't reserve more than you have, even though the
constraints are on another table:

postgres=# UPDATE fruit_offer SET offered_amount = 1100 WHERE offer_id
= 1;
ERROR: new row for relation "fruits_in_stock" violates check
constraint "fruits_in_stock_check"
DETAIL: Failing row contains (APPLE, 500, 1100).
CONTEXT: SQL statement "UPDATE fruits_in_stock
 SET reserved = reserved - OLD.offered_amount
 + NEW.offered_amount
 WHERE name = NEW.fruit_name"
PL/pgSQL function reserve_stock_on_offer() line 8 at SQL statement

When you finally delete the offer, the reservation is released:

postgres=# DELETE FROM fruit_offer WHERE offer_id = 1;
DELETE 1
postgres=# SELECT * FROM fruits_in_stock;
-[RECORD 1]----
name | ORANGE
in_stock | 500
reserved | 0
-[RECORD 2]----
name | APPLE
in_stock | 500
reserved | 0

In a real system, you probably would archive the old offer before deleting it.

Auditing changes
If you need to know who did what to the data and when it was done, one way to do
that is to log every action that is performed on an important table.

There are at least two equally valid ways of doing the auditing:

•	 Use auditing triggers
•	 Allow tables to be accessed only through functions, and do the auditing

inside these functions

Here, we will take a look at minimal examples of both the approaches.

What Is a PostgreSQL Server?

[20]

First, let's create the tables:

CREATE TABLE salaries(
 emp_name text PRIMARY KEY,
 salary integer NOT NULL
);

CREATE TABLE salary_change_log(
 changed_by text DEFAULT CURRENT_USER,
 changed_at timestamp DEFAULT CURRENT_TIMESTAMP,
 salary_op text,
 emp_name text,
 old_salary integer,
 new_salary integer
);
REVOKE ALL ON salary_change_log FROM PUBLIC;
GRANT ALL ON salary_change_log TO managers;

You don't generally want your users to be able to change audit logs, so grant only
the managers the right to access these. If you plan to let users access the salary table
directly, you should put a trigger on it for auditing:

CREATE OR REPLACE FUNCTION log_salary_change () RETURNS trigger AS $$
 BEGIN
 IF TG_OP = 'INSERT' THEN
 INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
 VALUES (TG_OP,NEW.emp_name,NEW.salary);
 ELSIF TG_OP = 'UPDATE' THEN INSERT INTO salary_change_
log(salary_op,emp_name,old_salary,new_salary)
 VALUES (TG_OP,NEW.emp_name,OLD.salary,NEW.salary);
 ELSIF TG_OP = 'DELETE' THEN
 INSERT INTO salary_change_log(salary_op,emp_name,old_salary)
 VALUES (TG_OP,NEW.emp_name,OLD.salary);
 END IF;
 RETURN NEW;
 END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE TRIGGER audit_salary_change
AFTER INSERT OR UPDATE OR DELETE ON salaries
 FOR EACH ROW EXECUTE PROCEDURE log_salary_change ();

Chapter 1

[21]

Now, let's test out some salary management:

postgres=# INSERT INTO salaries values('Bob',1000);
INSERT 0 1
postgres=# UPDATE salaries set salary = 1100 where emp_name = 'Bob';
UPDATE 1
postgres=# INSERT INTO salaries values('Mary',1000);
INSERT 0 1
postgres=# UPDATE salaries set salary = salary + 200;
UPDATE 2
postgres=# SELECT * FROM salaries;
-[RECORD 1]--
emp_name | Bob
salary | 1300
-[RECORD 2]--
emp_name | Mary
salary | 1200

Each one of those changes is saved into the salary change log table for
auditing purposes:

postgres=# SELECT * FROM salary_change_log;
-[RECORD 1]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.311299
salary_op | INSERT
emp_name | Bob
old_salary |
new_salary | 1000
-[RECORD 2]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.313405
salary_op | UPDATE
emp_name | Bob
old_salary | 1000
new_salary | 1100
-[RECORD 3]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.314208
salary_op | INSERT
emp_name | Mary
old_salary |
new_salary | 1000
-[RECORD 4]--------------------------
changed_by | frank

What Is a PostgreSQL Server?

[22]

changed_at | 2012-01-25 15:44:43.314903
salary_op | UPDATE
emp_name | Bob
old_salary | 1100
new_salary | 1300
-[RECORD 5]--------------------------
changed_by | frank
changed_at | 2012-01-25 15:44:43.314903
salary_op | UPDATE
emp_name | Mary
old_salary | 1000new_salary | 1200

On the other hand, you may not want anybody to have direct access to the salary
table, in which case you can perform the following:

REVOKE ALL ON salaries FROM PUBLIC;

Also, give users access to only two functions: the first is for any user looking at
salaries and the other is for changing salaries, which is available only to managers.

The functions themselves will have all the access to underlying tables because they
are declared as SECURITY DEFINER, which means they run with the privileges of the
user who created them.

The salary lookup function will look like the following:

CREATE OR REPLACE FUNCTION get_salary(text)
RETURNS integer
AS $$
 -- if you look at other people's salaries, it gets logged
 INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
 SELECT 'SELECT',emp_name,salary
 FROM salaries
 WHERE upper(emp_name) = upper($1)
 AND upper(emp_name) != upper(CURRENT_USER); – don't log select
of own salary
 -- return the requested salary
 SELECT salary FROM salaries WHERE upper(emp_name) = upper($1);
$$ LANGUAGE SQL SECURITY DEFINER;

Notice that we implemented a "soft security" approach, where you can look up for
other people's salaries, but you have to do it responsibly, that is, only when you need
to as your manager will know that you have checked.

Chapter 1

[23]

The set_salary() function abstracts away the need to check if the user exists; if the
user does not, it is created. Setting someone's salary to 0 will remove him from the
salary table. Thus, the interface is much simplified and the client application of these
functions needs to know and do less:

CREATE OR REPLACE FUNCTION set_salary(i_emp_name text, i_salary int)
RETURNS TEXT AS $$
DECLARE
 old_salary integer;
BEGIN
 SELECT salary INTO old_salary
 FROM salaries
 WHERE upper(emp_name) = upper(i_emp_name);
 IF NOT FOUND THEN
 INSERT INTO salaries VALUES(i_emp_name, i_salary);
 INSERT INTO salary_change_log(salary_op,emp_name,new_salary)
 VALUES ('INSERT',i_emp_name,i_salary);
 RETURN 'INSERTED USER ' || i_emp_name;
 ELSIF i_salary > 0 THEN
 UPDATE salaries
 SET salary = i_salary
 WHERE upper(emp_name) = upper(i_emp_name);
 INSERT INTO salary_change_log
 (salary_op,emp_name,old_salary,new_salary)
 VALUES ('UPDATE',i_emp_name,old_salary,i_salary);
 RETURN 'UPDATED USER ' || i_emp_name;
 ELSE -- salary set to 0
 DELETE FROM salaries WHERE upper(emp_name) = upper(i_emp_
name);
 INSERT INTO salary_change_log(salary_op,emp_name,old_salary)
 VALUES ('DELETE',i_emp_name,old_salary);
 RETURN 'DELETED USER ' || i_emp_name;
 END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

Now, drop the audit trigger (or the changes will be logged twice) and test the
new functionality:

postgres=# DROP TRIGGER audit_salary_change ON salaries;
DROP TRIGGER
postgres=#
postgres=# SELECT set_salary('Fred',750);
-[RECORD 1]------------------

What Is a PostgreSQL Server?

[24]

set_salary | INSERTED USER Fred

postgres=# SELECT set_salary('frank',100);
-[RECORD 1]-------------------
set_salary | INSERTED USER frank

postgres=# SELECT * FROM salaries ;
-[RECORD 1]---
emp_name | Bob
salary | 1300
-[RECORD 2]---
emp_name | Mary
salary | 1200
-[RECORD 3]---
emp_name | Fred
salary | 750
-[RECORD 4]---
emp_name | frank
salary | 100

postgres=# SELECT set_salary('mary',0);
-[RECORD 1]-----------------
set_salary | DELETED USER mary

postgres=# SELECT * FROM salaries ;
-[RECORD 1]---
emp_name | Bob
salary | 1300
-[RECORD 2]---
emp_name | Fred
salary | 750
-[RECORD 3]---
emp_name | frank
salary | 100

postgres=# SELECT * FROM salary_change_log ;
...
-[RECORD 6]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.057592
salary_op | INSERT
emp_name | Fred
old_salary |
new_salary | 750

Chapter 1

[25]

-[RECORD 7]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.062456
salary_op | INSERT
emp_name | frank
old_salary |
new_salary | 100
-[RECORD 8]--------------------------
changed_by | gsmith
changed_at | 2013-01-25 15:57:49.064337
salary_op | DELETE
emp_name | mary
old_salary | 1200
new_salary |

Data cleaning
We notice that employee names don't have consistent cases. It would be easy to
enforce consistency by adding a constraint:

CHECK (emp_name = upper(emp_name))

However, it is even better to just make sure that it is stored as uppercase, and the
simplest way to do it is by using trigger:

CREATE OR REPLACE FUNCTION uppercase_name ()
 RETURNS trigger AS $$
 BEGIN
 NEW.emp_name = upper(NEW.emp_name);
 RETURN NEW;
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER uppercase_emp_name
BEFORE INSERT OR UPDATE OR DELETE ON salaries
 FOR EACH ROW EXECUTE PROCEDURE uppercase_name ();

The next set_salary() call for a new employee will now insert emp_name in
uppercase:

postgres=# SELECT set_salary('arnold',80);
-[RECORD 1]-------------------
set_salary | INSERTED USER arnold

What Is a PostgreSQL Server?

[26]

As the uppercasing happened inside a trigger, the function response still shows a
lowercase name, but in the database it is uppercase:

postgres=# SELECT * FROM salaries ;
-[RECORD 1]---
emp_name | Bob
salary | 1300
-[RECORD 2]---
emp_name | Fred
salary | 750
-[RECORD 3]---
emp_name | frank
salary | 100
-[RECORD 4]---
emp_name | ARNOLD
salary | 80

After fixing the existing mixed-case emp_names, we can make sure that all emp_names
will be in uppercase in the future by adding a constraint:

postgres=# update salaries set emp_name = upper(emp_name) where not
emp_name = upper(emp_name);
UPDATE 3
postgres=# alter table salaries add constraint emp_name_must_be_
uppercasepostgres-# CHECK (emp_name = upper(emp_name));
ALTER TABLE

If this behavior is needed in more places, it would make sense to define a new type
– say u_text, which is always stored as uppercase. You will learn more about this
approach in the chapter about defining user types.

Custom sort orders
The last example in this chapter is about using functions for different ways of sorting.

Say we are given a task of sorting words by their vowels only, and in addition to
that, make the last vowel the most significant one when sorting. While this task may
seem really complicated at first, it is easy to solve with functions:

CREATE OR REPLACE FUNCTION reversed_vowels(word text)
 RETURNS text AS $$
 vowels = [c for c in word.lower() if c in 'aeiou']
 vowels.reverse()
 return ''.join(vowels)

Chapter 1

[27]

$$ LANGUAGE plpythonu IMMUTABLE;

postgres=# select word,reversed_vowels(word) from words order by
reversed_vowels(word);
 word | reversed_vowels
-------------+-----------------
 Abracadabra | aaaaa
 Great | ae
 Barter | ea
 Revolver | eoe
(4 rows)

The best part is that you can use your new function in an index definition:

postgres=# CREATE INDEX reversed_vowels_index ON words (reversed_
vowels(word));
CREATE INDEX

The system will automatically use this index whenever the function
reversed_vowels(word) is used in the WHERE clause or ORDER BY.

Programming best practices
Developing application software is complicated. Some of the approaches to help
manage that complexity are so popular that they've been given simple acronyms to
remember them. Next, we'll introduce some of these principles and show how server
programming helps make them easier to follow.

KISS – keep it simple stupid
One of the main techniques to successful programming is writing simple code.
That is, writing code that you can easily understand three years from now, and
that others can understand as well. It is not always achievable, but it almost always
makes sense to write your code in the simplest way possible. You may rewrite parts
of it later for various reasons such as speed, code compactness, to show off how
clever you are, and so on. But always write the code first in a simple way, so you can
absolutely be sure that it does what you want. Not only do you get working on code
fast, you also have something to compare to when you try more advanced ways to
do the same thing.

And remember, debugging is harder than writing code; so if you write the code in
the most complex way you can, you will have a really hard time debugging it.

What Is a PostgreSQL Server?

[28]

It is often easier to write a set returning function instead of a complex query. Yes,
it will probably run slower than the same thing implemented as a single complex
query due to the fact that the optimizer can do very little to code written as
functions, but the speed may be sufficient for your needs. If more speed is needed,
it's very likely to refactor the code piece by piece, joining parts of the function into
larger queries where the optimizer has a better chance of discovering better query
plans until the performance is acceptable again.

Remember that for most of the times, you don't need the absolutely fastest code.
For your clients or bosses, the best code is the one that does the job well and arrives
on time.

DRY – don't repeat yourself
This one means to try to implement any piece of business logic just once, and put the
code for doing it in the right place.

It may sometimes be hard, for example you do want to do some checking of your
web forms in the browser, but still do the final check in the database. But as a general
guideline it is very much valid.

Server programming helps a lot here. If your data manipulation code is in the
database near the data, all the data users have easy access to it, and you will not
need to manage a similar code in a C++ Windows program, two PHP websites, and a
bunch of Python scripts doing nightly management tasks. If any of them needs to do
this thing to a customer's table, they just call:

SELECT * FROM do_this_thing_to_customers(arg1, arg2, arg3);

And that's it!

If the logic behind the function needs changing, you just change the function with no
downtime and no complicated orchestration of pushing database query updates to
several clients. Once the function is changed in the database, it is changed for all users.

YAGNI – you ain't gonna need it
In other words, don't do more than you absolutely need to.

If you have a creepy feeling that your client is not yet well aware of what the
final database will look like or what it will do, it's helpful to resist the urge to
design "everything" into the database. A much better way is to do the minimal
implementation that satisfies the current spec, but do it with extensibility in mind.
It is much easier to "paint yourself into a corner" when implementing a big spec
with large imaginary parts.

Chapter 1

[29]

If you organize your access to the database through functions, it is often possible
to do even large rewrites of business logic without touching the frontend
application code. Your application still does SELECT * FROM do_this_thing_to_
customers(arg1, arg2, arg3) even after you have rewritten the function five
times and changed the whole table structure twice.

SOA – service-oriented architecture
Usually when you hear the acronym SOA, it comes from Enterprise Software people
selling you a complex set of SOAP services. But the essence of the SOA is organizing
your software platform as a set of services that clients and other services call for
performing certain well-defined atomic tasks, such as:

•	 Checking a user's password and credentials
•	 Presenting him/her with a list of his/her favorite websites
•	 Selling him/her a new red dog collar with complementary membership in

the red-collared dog club

These services can be implemented as SOAP calls with corresponding WSDL
definitions and Java servers with servlet containers, and complex management
infrastructure. They can also be a set of PostgreSQL functions, taking a set of
arguments and returning a set of values. If arguments or return values are complex,
they can be passed as XML or JSON, but often a simple set of standard PostgreSQL
data types is enough. In Chapter 9, Scaling Your Database with PL/Proxy, we will learn
how to make such PostgreSQL-based SOA service infinitely scalable.

Type extensibility
Some of the preceding techniques are available in other databases, but PostgreSQL's
extensibility does not stop here. In PostgreSQL, you can just write User-defined
functions (UDFs) in any of the most popular scripting languages. You can also
define your own types, not just domains, which are standard types with some extra
constraints attached, but new full-fledged types too.

For example, a Dutch company MGRID has developed value with unit set of data
types, so that you can divide 10 km by 0.2 hour and get the result in 50 km/h. Of
course, you can also cast the same result to meters per second or any other unit of
speed. And yes, you can get this as a fraction of c—the speed of light.

This kind of functionality needs both the types themselves and overloaded operands,
which know that if you divide distance by time then the result is speed. You will also
need user-defined casts, which are automatically- or manually-invoked conversion
functions between types.

What Is a PostgreSQL Server?

[30]

MGRID developed this for use in medical applications where the cost of error can
be high—the difference between 10 ml and 10 cc can be vital. But using a similar
system could also have averted many other disasters, where using wrong units has
ended with producing bad computation results. If the unit is always there together
with the amount, the possibility for these kinds of errors is very much diminished.
You can also add your own index methods if you have some programming skills
and your problem domain is not well served by the existing indexes. There is already
a respectable set of index types included in the core PostgreSQL, as well as several
others which are developed outside the core.

The latest index method which became officially included in PostgreSQL is KNN
(K Nearest Neighbor)—a clever index, which can return K rows ordered by their
distance from the desired search target. One use of KNN is in fuzzy text search,
where this can be used for ranking full-text search results by how well they match
the search terms. Before KNN, this kind of thing was done by querying all rows
which matched even a little, and then sorting all these by the distance function and
returning K top rows as the last step.

If done using KNN index, the index access can start returning the rows in the desired
order; so a simple LIMIT K function will return you the K top matches.

The KNN index can also be used for real distances, for example answering the
request "Give me the 10 nearest pizza places to central station."

As you see, index types are separate from the data types they index. As another
example, the same GIN (General Inverted Index) can be used for full-text search
(together with stemmers, thesauri, and other text processing stuff) as well as
indexing elements of integer arrays.

On caching
Yet another place where server-side programming can be used is for caching values,
which are expensive to compute. The basic pattern here is:

1.	 Check if the value is cached.
2.	 If not or the value is too old, compute and cache it.
3.	 Return the cached value.

For example, calculating sales for a company is the perfect item to cache. Perhaps,
a large retail company has 1,000 stores with potentially millions of individual sales
transactions per day. If the corporate headquarters is looking for sales trends, it is
much more efficient if the daily sales numbers were precalculated at the store level
instead of summing up millions of daily transactions.

Chapter 1

[31]

If the value is simple, like looking up a user's information from a single table
based on the user ID, you don't need to do anything. The value becomes cached in
PostgreSQL's internal page cache, and all lookups to it are so fast that even on a very
fast network most of the time spent doing the lookups are in the network, not in the
actual lookup. In such a case, getting data from a PostgreSQL database is as fast as
getting it from any other in-memory cache (like memcached) but without any extra
overhead in managing the cache.

Another use-case of caching is implementing materialized views. These are views
which are precomputed only when needed, not each time one selects from that
view. Some SQL databases have materialized views as a separate database object,
but in PostgreSQL you have to do it all yourself, using other database features for
automating the whole process.

Wrap up – why program in the server?
The main advantages of doing most data manipulation code server-side are
the following.

Performance
Doing the computation near data is almost always a performance win, as the
latencies for getting the data are minimal. In a typical data-intensive computation,
most of the time tends to be spent in getting the data. Therefore, making data access
inside the computation faster is the best way to make the whole thing fast. On my
laptop it takes 2.2 ms to query one random row from a 1,00,000 row database into the
client, but it takes only 0.12 ms to get the data inside the database. This is 20 times
faster and this is inside the same machine over Unix sockets. The difference can be
bigger if there is a network connection between client and server.

A small real-word story:

A friend of mine was called to help a large company (I'm sure you all know it,
though I can't tell you which one) to try to make its e-mail sending application
faster. They had implemented their e-mail generation system with all the latest Java
EE technologies, first getting the data from the database, passing the data around
between services, and serializing and de-serializing it several times before finally
doing XSLT transform on the data to produce the e-mail text. The end result being
that it produced only a few hundred e-mails per second and they were falling behind
with their responses.

What Is a PostgreSQL Server?

[32]

When he rewrote the process to use a PL/Perl function inside the database to format
the data and the query returned already fully-formatted e-mails, it suddenly started
spewing out tens of thousands of e-mails per second, and they had to add a second
copy of sent mail to actually be able to send them out.

Ease of maintenance
If all data manipulation code is in a database, either as database functions or views,
the actual upgrade process becomes very easy. All that is needed is running a DDL
script that redefines the functions and all the clients automatically use the new code
with no downtime, and no complicated coordination between several frontend
systems and teams.

Simple ways to tighten security
If all access for some possibly insecure servers goes through functions, the database
user of these servers use can be granted only the access to the needed functions and
nothing else. They can't see the table data or even the fact that these tables exist. So
even if that server becomes compromised, all it can do is continue to call the same
functions. Also, there is no possibility to steal passwords, e-mails, or other sensitive
information by issuing its own queries like SELECT * FROM users; and getting all
the data there is in the database.

And the most important thing, programming in server is fun!

Summary
Programming inside the database server is not always the first thing that comes to
mind to many developers, but it's unique placement inside the application stack
gives it some powerful advantages. Your application can be faster, more secure,
and more maintainable by pushing your logic into the database. With server-side
programming in PostgreSQL, you can:

•	 Secure your data using functions
•	 Audit access to your data using triggers
•	 Enrich your data using custom data types
•	 Analyze your data using custom operators

And this is just the very start of what you can do inside PostgreSQL. Throughout
the rest of this book, you will learn about many other ways to write powerful
applications by programming inside PostgreSQL.

Server Programming
Environment

You have had a chance to get acquainted with the general idea of using PostgreSQL,
but now we are going to answer the question of why anyone would choose
PostgreSQL as a development platform. As much as I like to believe that it's an easy
decision for everyone, it's not.

For starters, let's get rid of the optimistic idea that anyone chooses a database
platform for technical reasons. Sure, we would all like to think that we are objective,
and we base our decisions on a preponderance of the technical evidence. This
preponderance of evidence then indicates which features are available and relevant
to our application. We would then proceed to make a weighted choice in favor
of the most advantageous platform, and use the balance of the evidence to create
workarounds and alternatives where our choice falls short. The fact is, we don't
really understand all of the requirements of the application until we are halfway
through the development cycle. Here are some reasons why:

•	 We don't know how the application will evolve over time. Many start-ups
pivot from their initial idea as the market tells them to change.

•	 We don't know how many users there will really be until we have some
registrations and can begin to measure the curve.

•	 We don't realize how important a particular feature could be until we get
user feedback. The truth is that we don't really know much of the long term
needs of the application until we're writing Version 2 or maybe even 3.

That is, unless you're one of the fortunate few that has a Research and Development
department that writes the alpha version, throws it out the window, and then asks
you to write the next version based on the lessons learned. Even then, you really
don't know what the usage patterns are going to be once the application is deployed.

Server Programming Environment

[34]

What we generally see in the PostgreSQL community, when new users start asking
questions, are not people looking to make a decision, but rather people who already
made a decision. In most cases, they are looking for technical justification for an
existing plan of action. The decision point has already been passed. What I am going
to write about in this chapter is not a TPC benchmark, nor is it about relative merits
of PostgreSQL functions versus stored procedures. Frankly, nobody really cares
about those things until after they have already made a choice and are trying to
justify it.

This chapter contains the guide that I wish someone had written for me when I chose
PostgreSQL back in 1998.

Cost of acquisition
One of biggest factors in deciding what technology is used in the application
stack is the cost of acquisition. I've seen many application architectures drawn on
a whiteboard where the technical team was embarrassed to show me, but they
justified the design by trying to keep software licensing costs down. When it comes
to the database environment, the usual suspects are Oracle, SQL Server, MySQL,
and PostgreSQL. Oracle, the dominant player in the database space, is also the most
costly. At the low end, Oracle does have reasonably priced offering and even a free
express edition, but they are limited. Most people have needs beyond the low priced
offerings and fall into the enterprise sales machine of Oracle. This usually results
in a high price quote that makes your CFO fall out of his chair and you're back to
designing your solution to keep your licensing costs down.

Then comes Microsoft SQL Server. This is your first reasonably viable option. The
pricing is listed on the Microsoft website. I will not reproduce it here because the
pricing schedule is too volatile for a book that will remain in print for more than
5 minutes. Nonetheless, an experienced thumb value of the purchase cost for SQL
Server will get you running with a web capable model for about $5,000. This does
not include a service contract. In the grand scheme of development costs, this is
reasonable, and not too high of a barrier to enter.

Then we have the open source offerings, which are MySQL and PostgreSQL. They
cost nothing, and the service contracts cost—wait for it—nothing. That is a very hard
cost of acquisition to beat.

Remember in the beginning of the chapter, when I was talking about all of the things
that you don't know when the project starts? Here's where the real win comes in.
You can afford to fail.

There, I said it!

Chapter 2

[35]

Low cost of acquisition is a synonym for low cost of failure. When we add up all of
the unknowns for the project, we find out that we have a fairly good chance that the
first iteration will not meet the market needs, and we need to have a way to jettison it
quickly without long term contracts and additional costs of spinning up a new project.

This allows the project manager to move on to the next version using lessons
learned from the consumer after the first version. Hopefully, this lesson in user
acceptance will come at a very low cost, and the project will then begin to thrive
the following version of this is bold (so are the versions on page 7) and begins a
new paragraph - these should be consistent don't hang the success of the project
on getting the first version perfect. You won't.

Availability of developers
This has been one of the most hilariously fun parts of my development life. I recently
recommended using PostgreSQL for a reporting system in a local company. The
company in question wanted to know if they chose PostgreSQL, would anyone on
staff be able to maintain it. So I began to interview the developers to find out about
their experience with PostgreSQL.

Me: Do you have any experience with PostgreSQL?

Developer 1: Yes, I used it at the last job for a product fulfillment project, but I don't
think very many people have that experience. We should probably stick with MySQL.

Me: Do you have any experience with PostgreSQL?

Developer 2: Yes, I used it at the last job for a reporting project, but I don't think very
many people have that experience. We should probably stick with MySQL.

After interviewing all seven developers that were influential on the project, I found
that the only person without hands-on experience with PostgreSQL was the project
manager. Since the project manager didn't expect to have any technical involvement
in the project, he approved the selection of PostgreSQL.

PostgreSQL is one of the dirty little secrets of web developers. They have about the
same level of familiarity with it as they do with encryption and security. Because
"only advanced users" would use it, they have a general geek requirement to look
into it, and presume that everyone else is too "inexperienced" to do the same.
Everyone is trying to "dumb it down" for the other guy. They consider their own use
of the tools at hand, (MySQL) a sacrifice that they are willing to make to help the less
experienced fellow down the hall. Comically, the fellow down the hall thinks that
he's making the same sacrifice for everyone else.

Server Programming Environment

[36]

Lesson learned: Quit making choices for the "other guy". He is just as experienced
(and intelligent) as you are, or might just want the opportunity to advance his skills.

Licensing
About two months after Oracle bought MySQL, they announced a plan that divided
the development into two camps. There would now be a MySQL community edition
and a professional version. The community edition would no longer gain any new
features, and the professional version would become a commercial product.

There was a vast and thunderous sucking sound in the open source community,
as they thrashed wildly about to find a new platform for Free and Open Source
(FOSS) development.

Oracle immediately (in about 2 weeks) countermanded the order, and declared that
things would stay as they were for the indefinite future. Those with short memories,
forgiving hearts, or who just weren't paying attention went on about their business.
Many other open source projects either switched to PostgreSQL or suddenly grew
PostgreSQL database support.

Today we have MySQL and MySQL Enterprise Edition. If you want "backup, high
availability, enterprise scalability, and the MySQL Enterprise monitor", you now have
to pony up some dough. Capitalism is fine, and corporations have a right to charge
money for their services and products in order to exist. But why should you as a
project manager or developer have to pay for something that you can get for free?

Licensing is all about continued product availability and distribution. The
PostgreSQL licensing model specifically states that you can have the source code,
do anything with it that you want, redistribute it however you jolly well please, and
those rights extend indefinitely. Try to get that deal with a commercial vendor.

As a corporate developer, PostgreSQL wins the legal battle for risk management
hands down. I have heard the argument "I want to go with a commercial vendor in
case I need someone to sue." I would encourage anyone who considers that a good
argument to do a little research about how often these vendors have been sued, how
often those suits were successful, and what the cost of court was for that success. I
think you'll find that the only viable option is not to have that battle.

Chapter 2

[37]

Predictability
This section could just as well have been titled "standards compliance," but I decided
against it because the benefits of standards compliance in corporate projects are not
obvious. The limitations of the common databases are well documented, and I will
show you a few websites in a moment where you can make a comparison of who has
the most "unintended behavior". I encourage you to read the material while thinking
to yourself about the question, "Which method of feature development is most likely
to make my application break in the future?"

http://www.sql-info.de/postgresql/postgres-gotchas.html

http://www.sql-info.de/mysql/gotchas.html

Spoiler alert: Stricter adherence to standards comes at the cost of not allowing
ambiguous behavior. Not allowing ambiguous behavior makes the developer's
life more difficult. Making the developer's life more difficult ensures that the
interpretation of the commands that the developer gives will not change later,
breaking the application.

Just how lazy can you afford to be? I'm not sure how to measure it. PostgreSQL is
available for no cost future predictability, so I don't have to answer the question.

Sure, PostgreSQL also has some bugs listed. However, changes to the database core
have a tendency to make the engine work like the documentation says it does, not
like the documentation should have said. The PostgreSQL developers don't have
to say "oops, I didn't think of that", very often. And when they do, PostgreSQL just
becomes more standards compliant.

Community
Oracle and SQL Server don't have a community. Please understand when I say that,
I mean that the chance that you will get to talk to a developer of the core database
is about the same as your chance of winning the lottery. By the time you do, it's
probably because you found a bug so heinous that it couldn't be ignored, and the
only person who can understand your report is the guy that wrote the code in
question. They have paid technical support, and that support has proven in my
experience to be generally competent, but not stellar. I have had to work around the
problem that I originally requested help with about 40 percent of the time.

Server Programming Environment

[38]

Contrast that to MySQL and PostgreSQL, where just about anybody can speak to just
about anybody else all day long. Many of the core developers of both the platforms
can be found on IRC, met at conventions, contacted for contract development work,
and for the most part, bribed remarkably easily with beer (hint, hint, wink, wink,
nudge, nudge).

They are actively concerned with the health of the overall community, and will
answer just about any kind of question you can ask. Even if the question has a very
tenuous relationship to database development. My personal experience is that
the PostgreSQL team has more core developers readily available more often than
MySQL. They are also more personally available at conventions and meetings.

Did I mention they like beer?

Procedural languages
SQL Server allows you to create DLLs in any language that produces CLR. These
DLLs must be loaded into the server at boot time. To create a procedure at run time
and have it be immediately available, the only choice is the built in SQL dialect,
Transact SQL (TSQL).

MySQL has a feature called plugins. One of the legal plugin types is a procedural
language. Several languages have been tooled to work with MySQL via the plugin
system, including most of the popular ones such as PHP and Python. These functions
cannot be used for stored procedures or triggers, but they can be invoked from the
common SQL statements. For the rest, you are stuck with the built-in SQL.

PostgreSQL has full support for additional procedural languages, which can be
used to create any legal entity in the database that can be created with PL/pgSQL.
The language can be added (or removed) from a running version of PostgreSQL
and any function defined using that language may also be created or dropped while
PostgreSQL is running. These languages have full access to PostgreSQL internal
functions and all data entities that the calling user has permission.

There are many of these plugin language extensions available for PostgreSQL.
I have used the ones for PHP, Python, bash, and PL/pgSQL. Yes, that means
that the standard language for PostgreSQL is also installed and managed using
the same extension system as any other language.

This brings us to the point that we have more developers available for PostgreSQL
than you might have originally thought. Software developers are not required to
learn a new development language to write stored procedures. They can extend
PostgreSQL with the language of choice, and continue to code in the manner and
workflow that they choose.

Chapter 2

[39]

Lesson learned: There are no second class citizens in the PostgreSQL development
community. Anyone can code in (almost) any language they choose.

Third-party tools: A frequent comparison point among the database platforms is the
number of third-party applications available. I'm not so sure that the total number of
them matters as much as the existence of applications you actually need.

To that end, following is a list of the products that I have used extensively
with PostgreSQL:

•	 Pentaho Data Integration (kettle): This is an outstanding Extract Transform
and Load (ETL) tool

•	 Pentaho Report Server: This is a great reporting engine
•	 PgAdmin3: This is an awesome database administration tool
•	 php5-postgesql: This is a package to allow native access to PostgreSQL from

PHP
•	 Qcubed: This is the PHP development framework with PostgreSQL support
•	 Yii: This is another great PHP development framework
•	 Talend: This is another ETL tool that works, but was not my favorite
•	 BIRT: This is a great JAVA reporting tool with easy report creation

environment
•	 psycopg2: This is the Python bindings for PostgreSQL

These tools have made the PostgreSQL development experience a breeze and is no
where near a complete list. We could fill this book with just a list of applications that
support PostgreSQL and thanks to its liberal license, PostgreSQL is embedded in
many commercial applications and you never really know it.

Lesson learned: Don't worry too much about how many tools are out there for the
product. The ones that matter are available.

Platform compatibility
SQL Server is a Microsoft product. As such, it was and will always be a Microsoft
platform tool. It is accessible to some limited degree via ODBC, but is not a serious
choice for cross-platform development.

Server Programming Environment

[40]

MySQL and PostgreSQL support every operating system currently available today.
This ability (or lack of limitation) is a strong argument for long term stability. If any
particular operating system is no longer available, or no longer supports open source
software, it is fairly trivial to move the database server to another platform.

Lesson learned: In the commercial operating system wars, just say no.

Application design
"The thing that hath been, it is that which shall be; and that which is done is that
which shall be done: and there is no new thing under the sun."

—Ecclesiastes 1:8-10 KJV

"... old things are passed away; behold, all things are become new."

—2 Corinthians 5:16-18 KJV

In software development, we are always running into the situation where what is
old is new again and those developers who embrace a philosophy swear by it like
a religion. We swing back and forth from thin server to thin client, between flat
and hierarchical storage, from desktop application to web application and, most
appropriately for this chapter, between client and server programming.

The reason for this swing between programming implementations has nothing to do
with the features that the client or the server offers. Developer experience is a much
more likely influence, and this influence can go in either direction, depending on
what the developer encountered first.

I encourage both the server-centric developer and the client-centric developer to lay
down their pitchforks while reading the rest of this chapter.

We will discuss, in due time, most of the new features of "server programming". If
you're still not convinced by then, we will look at how you can harness the benefit of
most of those features without leaving your application-centered point of view.

Databases are considered harmful
The simplest and least powerful way of looking at server programming is to view
the database as a data bucket. Using only the most basic SQL statements of INSERT,
SELECT, UPDATE, and DELETE, you can manipulate data a single row at a time and
create application libraries for multiple databases very easily.

Chapter 2

[41]

This approach has some major drawbacks. Moving data back and forth to the
database server one row at a time is extremely inefficient and you will find that
this method is simply not viable in a web scale application.

This idea is usually associated with a concept of a "data abstraction layer", a
client library that allows the developer to switch the database out from under the
application with very little effort. This abstraction layer is very useful in the open
source development community, which allows the use of many databases, but they
have no financial incentive to get the best possible performance.

In a 27 year career, I have never actually changed the database of an installed
application without throwing away the application. One of the principles of agile
software development is YAGNI (you ain't gonna need it). This is one of those cases.

Lesson learned: Data abstraction is valuable for projects that need to select a
database platform at installation time. For everybody else, just say no.

Encapsulation
Another technique used in more client centric development philosophies is to try to
isolate the database specific calls into a library of procedures. This design is usually
aimed at leaving the application in control of all business logic. The application is
still king, and the database is still just a necessary evil.

This view of database architecture sells the application developer short by ignoring a
toolbox full of tools and choosing only the hammer. Everything in the application is
then painted to look like a nail, and smacked with the hammer.

Lesson learned: Don't give up the power of the database just because it is not
familiar. Use procedural languages and check out extension toolkits. There are
some awesome pieces of work in there.

What does PostgreSQL offer?
So far we've mentioned procedural languages, functions, triggers, custom data
types, and operators. These things can be created directly in the database via CREATE
commands, or added as libraries using extensions.

Now we will show you some things you need to keep in mind when programming
on the server in PostgreSQL.

Server Programming Environment

[42]

Data locality
If at all possible, keep the data on the server. Believe me, it's happier there, and
performance is much better when modifying data. If everything was done in
the application layer, the data would need to be returned from the database, the
modifications made, and then finally sent back to the database for a commit. If you
are building a web-scalable application, this should be your last resort.

Let's walk through a small snippet using two methods of making an update to a
single record:

<?php
 $db = pg_connect("host port user password dbname schema");
 $sql = "SELECT * FROM customer WHERE id = 23";
 $row = pg_fetch_array($db,$sql);
 if ($row['account_balance'] > 6000) {
 $sql = "UPDATE customer SET valued_customer = true;";
 pg_query($db,$sql);
 }
 pg_close($db);
?>

This code snippet pulls a row of data from the database server to the client, makes an
evaluation, and changes a customer account based on the evaluation. The result of
the change is then sent back to the server for processing.

There are several things wrong with this scenario. First, the scalability is terrible.
Imagine if this operation needed to be performed for thousands or even millions
of customers.

The second problem is transactional integrity. What happens if the user's account
balance changes from some other transaction between the query and the update?
Is the customer still valued? That would depend on the business reason for the
evaluation.

Try the following example:

<?php
 $db = pg_connect('...');
 pg_query('UPDATE customer SET valued_customer = true WHERE balance >
6000;', $db);
 pg_close($db);
?>

Chapter 2

[43]

This is simpler, has transactional integrity, and works for an incredibly large number
of customers. Why point out such a simple and obvious example? Because many
development frameworks work the "wrong" way by default. The code generator will
produce some equivalent form of this example in the interest of being cross-platform,
predictable, and easy to integrate into a simple design model.

This method promotes terrible practices. For systems that have a very low number
of concurrent transactions, you will probably see what you would expect, but as
concurrency increases, the number of unintended behaviors also increases.

The second example exposes a better philosophy: operate on columns, not rows,
leave the data on the server, and let the database do the transactional work for
you. That's what the database was made for.

More basics
It helps to have some basic background information before starting to program
for the server. In the next few sections, we will explore the general technical
environment in which you will be working. We will cover a lot of information, but
don't worry too much about remembering it all right now. Just try to pick up the
general idea.

Transactions
The default transaction isolation level in PostgreSQL is called Read Committed.
This means that if multiple transactions attempt to modify the same data, they must
wait for each other to finish before acting upon the resulting data. They wait in a
first-come-first-served order. The final result of the data is what most people would
naturally expect, reflecting the last chronological change.

PostgreSQL does not provide any way to do a dirty read. A dirty read is the ability to
view the data the way it appears in someone else's transaction, and use it as if it were
committed. This ability is not available in PostgreSQL because of the way that the
multi-version concurrency control works.

There are other transaction isolation methods available, you can read about them in
depth at http://www.postgresql.org/docs/9.2/static/transaction-iso.html.

It is important to note that when no transaction blocks are specified (BEGIN .. END),
that PostgreSQL will treat each individual statement like a private transaction, and
commit immediately when the statement is finished. This gives other transactions a
chance to settle in between your statements. Some programming languages provide
a transaction block around your statements, while some do not. Please check your
language documentation to find out if you are running in a transacted session.

Server Programming Environment

[44]

When using the two main clients to interact with PostgreSQL, the
transaction behavior is different. The psql command line client does
not provide transaction blocks for you. You are expected to know
when to start/stop a transaction on your own. The pgAdmin3 query
window on the other hand wraps any statement that you submit
into a transaction block for you. This is the way that it provides a
cancel option. If the transaction is interrupted, a ROLLBACK will be
performed and the database will go back to it's former state.

Some operations are exempt from transactions. For example, a sequence object will
continue to increment even if the transaction fails and is rolled back. CREATE INDEX
CONCURRENTLY requires management of it's own transactions, and should not be called
from within a transaction block. The same is true with VACUUM as well as CLUSTER.

General error reporting and error handling
If you want to provide status to the user during your execution, you will become
familiar with the commands RAISE, NOTICE, and NOTIFY. From a transactional
perspective, the difference is that RAISE NOTICE will send the message immediately,
even when wrapped in a transaction, while NOTIFY will wait for the transaction to
settle before sending a message. NOTIFY will therefore not actually notify you of
anything if the transaction fails and rolled back.

User-defined functions (UDF)
The ability to write user-defined functions is the powerhouse feature of PostgreSQL.
Functions can be written in many different programming languages, use any kind
of control structures that the language provides, and in the case of "untrusted"
languages, can perform any operation that is available in PostgreSQL.

Functions can provide features that are not even directly SQL related. Some of the
upcoming examples will show how to get network address information, query the
system, move files around, and just about anything your heart desires.

So, how do we access this sugary goodness of PostgreSQL? We start by declaring
that we want a function:

CREATE OR REPLACE FUNCTION addition (integer, integer) RETURNS integer
AS $$
DECLARE retval integer;
BEGIN
 SELECT $1 + $2 INTO retval;
 RETURN retval;
END;
$$ LANGUAGE plpgsql;

Chapter 2

[45]

But what if we wanted to add three integers together?

CREATE OR REPLACE FUNCTION addition (integer, integer, integer)
RETURNS integer
AS $$
DECLARE retval integer;
BEGIN
 SELECT $1 + $2 +$3 INTO retval;
 RETURN retval;
END;
$$ LANGUAGE plpgsql;

We just invoked a concept called function overloading. This feature allows us to
declare a function of the same name but with different parameters that potentially
behave differently. This difference can be as subtle as just changing the data type of
one of the arguments to the function. The function that PostgreSQL invokes depends
on the closest match to the function arguments and expected return type.

But suppose we want to add together any number of integers? Well, PostgreSQL has
a way to do that also.

CREATE OR REPLACE FUNCTION addition (VARIADIC arr integer[]) RETURNS
integer
AS $$
DECLARE retval integer;
BEGIN
	 SELECT sum($1[i]) INTO retval FROM generate_subscripts($1, 1) g(i)
;
	 RETURN retval;
END;
$$
LANGUAGE plpgsql;

This will allow us to pass in any number of integers, and get an appropriate
response. These functions of course do not handle real or numeric data types.
To handle other data types, simply declare the function again with those types,
and call them with the appropriate parameters.

For more information about variable parameters, see http://www.postgresql.org/
docs/9.2/static/xfunc-sql.html#XFUNC-SQL-VARIADIC-FUNCTIONS.

Server Programming Environment

[46]

Other parameters
There is more than one way to get data into and out of a function. We can also
declare IN/OUT parameters, return a table, return a set of records, and use cursors
for both input and output.

This brings us to a special data type called ANY. It allows the parameter type to be
undefined, and will allow any basic data type to be passed to the function. It is then
up to the function to decide what to do with the data from there.

More control
Once you have your function written the way you need, PostgreSQL gives you
additional control over how the function executes. You can control what data the
function can access and how PostgreSQL will interpret the expense of running
the function.

There are two statements that provide a security context for your functions. The first
one is Security Invoker, which is the default security context. In the default context,
the privileges of the calling user are respected by the function.

The other context is Security Definer. In this context, the user privileges of the
creator of the function are respected during the execution of the function. Generally,
this is used to temporarily escalate user rights for a specific purpose.

Cost can also be defined for the function. This cost will help the query planner
estimate how expensive it is to call your function. Higher orders of cost will cause
the query planner to change the access path so your function will be called as few
times as possible. The PostgreSQL documentation shows these numbers to be a
factor of cpu_operator_cost. That's more than a little misleading. The numbers
have no direct correlation to CPU cycles. They are only relevant in comparison with
one another. It's more like how some national money compares with the rest of the
European Union. Some Euros are more equal than others.

To estimate your own function's complexity, start with the language you are
implementing it in. For C, the default would be 1 * number of records returned.
For Python, 1.5. For scripting languages such as PHP, a more appropriate number
might be 100. For plsh, you might want to use 150 or more depending on how many
external tool calls are involved in getting an answer. The default is 100, and that
seems to work reasonably well for PL/pgSQL.

Chapter 2

[47]

Summary
Now you know a few things about the PostgreSQL environment, as well as
some things that will help you in the unforeseeable future. PostgreSQL is built
to handle your needs, but more importantly, it is built not to change underneath
you in the future.

We touched a little on the environment and called out some of the more important
things to keep in mind while programming on the server in PostgreSQL. Don't
worry too much if you don't remember all of it. It is fine to go on to the next chapter,
where we actually start making some useful functions. Then come back and review
this chapter when you have a clearer understanding of the features available to the
function writer.

Your First PL/pgSQL Function
A function is the basic building block for extending PostgreSQL. A function
accepts input in the form of parameters, and can create output in the form of
output parameters or return values. Many functions are provided by PostgreSQL
itself such as the common mathematical functions, for example, square root and
absolute value. For a comprehensive list of what is already available, go to
http://www.postgresql.org/docs/current/static/functions.html.

The functions that you create have all of the same privileges and power that the
built-in functions possess. The developers of PostgreSQL use the same libraries to
extend the database that you use as a developer to write your business logic.

This means that you have the tools available to be a first class citizen of the
PostgreSQL development community. In fact, there are no second-class seats
on this bus.

A function accepts parameters that can be of any data type available in PostgreSQL
and it returns results to the caller using any of the same types. What you do within
the function is entirely up to you. You have been enabled to do anything that
PostgreSQL is capable of doing. You are herewith also warned that you are capable
of doing anything that PostgreSQL is capable of doing. The training wheels are off.

In this chapter, you will learn:

•	 The basic building blocks of a PostgreSQL function
•	 Passing parameters into a function
•	 Basic control structures inside of a function
•	 Returning results out of a function

Your First PL/pgSQL Function

[50]

Why PL/pgSQL?
PL/pgSQL is a powerful SQL scripting language heavily influenced by PL/SQL, the
stored procedure language distributed with Oracle. It is included in the vast majority
of PostgreSQL installations as a standard part of the product, so it usually requires
no setup at all to begin.

PL/pgSQL also has a dirty little secret. The PostgreSQL developers don't want you
to know that it is a full-fledged SQL development language, capable of doing pretty
much anything within the PostgreSQL database.

Why is that a secret? For years, PostgreSQL did not claim to have stored procedures.
PL/pgSQL functions were originally designed to return scalar values and were
intended for simple mathematical tasks and trivial string manipulation.

Over the years, PL/pgSQL grew a rich set of control structures and gained the
ability to be used by triggers, operators, and indexes. In the end, the developers were
grudgingly forced to admit that they had a complete stored procedure development
system on their hands.

Along the way, the goal of PL/pgSQL changed from simplistic scalar functions
to providing access to all of the PostgreSQL system internals with full control
structure. The full list of what is available in the current version is provided at
http://www.postgresql.org/docs/current/static/plpgsql-overview.html.

Today, some of the benefits of using PL/pgSQL are:

•	 It is easy to use
•	 It is available by default on most deployments of PostgreSQL
•	 It is optimized for performance of data intensive tasks

In addition to PL/pgSQL, PostgreSQL also allows many other languages to be
plugged in to the database, some of which we will cover in this book. You may
also choose to write your functions in Perl, Python, PHP, bash, and a host of other
languages, but they will likely need to be added to your instance of PostgreSQL.

Structure of a PL/pgSQL function
It doesn't take much to get a PL/pgSQL function working. Here is a very basic example:

CREATE FUNCTION mid(varchar, integer, integer) RETURNS varchar
AS $$
BEGIN
 RETURN substring($1,$2,$3);

Chapter 3

[51]

END;
$$
LANGUAGE plpgsql;

The previous function shows the minimal elements of a PL/pgSQL function. It
creates an alias for the substring built-in function called mid. This is a handy alias
to have around for developers that come from Microsoft SQL Server or MySQL and
are wondering what happened to the mid function. It also illustrates the most basic
parameter passing strategy. The parameters are not named and are accessed in the
function by relative location from left to right.

The basic elements are name, parameters, return type, body, and language. It could
be argued that parameters are not mandatory for a function and neither is the return
value. This might be useful for a procedure that operates on data without providing
a response, but it would be prudent to return a value of TRUE to indicate that the
procedure succeeded.

Accessing function arguments
Function arguments can also be passed and accessed by name, instead of just by the
ordinal order. By accessing the parameters by name, it makes the resulting function
code a little more readable. The following is an example of a function that uses
named parameters:

CREATE FUNCTION mid(keyfield varchar, starting_point integer)
 RETURNS varchar
AS
$$
BEGIN
 RETURN substring(keyfield,starting_point);
END
$$
LANGUAGE plpgsql;

The previous function also demonstrates overloading of the mid function.
Overloading is another feature of PostgreSQL functions, which allows for multiple
procedures using the same name, but different parameters. In this case, we first
declared the mid function with three parameters, but in this example, overloading is
used to implement an alternative form of the mid function where there are only two
parameters. When the third parameter is omitted, the result will be the string starting
from starting_point and continuing to the end of the input string.

SELECT mid('Kirk L. Roybal',9);

Your First PL/pgSQL Function

[52]

The previous line of code yields the following result:

Roybal

In order to access the function parameters by name, PostgreSQL makes a few
educated guesses depending on the statement. Consider for a moment the
following function:

CREATE OR REPLACE FUNCTION ambiguous(parameter varchar) RETURNS
 integer AS $$
DECLARE retval integer;
BEGIN

INSERT INTO parameter (parameter) VALUES (parameter) RETURNING id
 INTO retval;
RETURN retval;

END
$$
language plpgsql;

SELECT ambiguous ('parameter');

This is an example of positively atrocious programming that should never occur
outside of an example of how not to write functions. However, PostgreSQL is
intelligent enough to correctly deduce that the contents of the function parameter
are only legal in the VALUES list. All other occurrences of "parameter" are actually
physical PostgreSQL entities.

We also introduced an optional section to the function. We declare a variable before
the BEGIN statement. Variables that appear in this section are valid during the
execution of the function.

Also of note in this function is the RETURNING id INTO retval statement. This
feature allows the developer to specify the identity field of the record, and return the
value of that field after the record has been inserted. Our function then returns this
value to the caller as an indicator that the function succeeded and a way to find the
record that has been inserted.

Chapter 3

[53]

Conditional expressions
Conditional expressions allow developers to control the action of the function
based on a defined criteria. The following is an example of using a CASE statement
to control how a string is treated based on its value. If the value is null, or contains
a zero length string, it is treated the same as null.

CREATE OR REPLACE FUNCTION format_us_full_name(

 prefix text, firstname text,

 mi text, lastname text,

 suffix text)

 RETURNS text AS

$$

DECLARE

 fname_mi text;

 fmi_lname text;

 prefix_fmil text;

 pfmil_suffix text;

BEGIN

 fname_mi := CONCAT_WS(' ',
 CASE trim(firstname)

 WHEN ''

 THEN NULL

 ELSE firstname

 END,

 CASE trim(mi)

Your First PL/pgSQL Function

[54]

 WHEN ''

 THEN NULL

 ELSE mi

 END || '.');

 fmi_lname := CONCAT_WS(' ',
 CASE fname_mi

 WHEN ''

 THEN NULL

 ELSE fname_mi

 END,

 CASE trim(lastname)

 WHEN ''

 THEN NULL

 ELSE lastname

 END);

 prefix_fmil := CONCAT_WS('. ',
 CASE trim(prefix)

 WHEN ''

 THEN NULL

 ELSE prefix

 END,

 CASE fmi_lname

 WHEN ''

Chapter 3

[55]

 THEN NULL

 ELSE fmi_lname

 END);

 pfmil_suffix := CONCAT_WS(', ',
 CASE prefix_fmil

 WHEN ''

 THEN NULL

 ELSE prefix_fmil

 END,

 CASE trim(suffix)

 WHEN ''

 THEN NULL

 ELSE suffix || '.'

 END);	

 RETURN pfmil_suffix;

END;

$$

 LANGUAGE plpgsql;

The idea here is that when any element of a full name is missing, the surrounding
punctuation and white space should also be missing. This function returns a well
formatted full name of a person in the USA, with as much of the name filled in as
possible. When running this function, you will see the following:

postgres=# select format_us_full_name('Mr', 'Martin', 'L', 'King',
 'Jr');

 format_us_full_name

Your First PL/pgSQL Function

[56]

 Mr. Martin L. King, Jr.

(1 row)

postgres=# select format_us_full_name('', 'Martin', 'L', 'King',
 'Jr');

 format_us_full_name

 Martin L. King, Jr.

(1 row)

Another way to use conditional expressions is by using the IF/THEN/ELSE blocks.
The following is the same function again written using IF statements rather than
CASE statements:

CREATE OR REPLACE FUNCTION format_us_full_name(

 prefix text, firstname text,

 mi text, lastname text,

 suffix text)

 RETURNS text AS

$$

DECLARE

 fname_mi text;

 fmi_lname text;

 prefix_fmil text;

 pfmil_suffix text;

Chapter 3

[57]

BEGIN

 fname_mi := CONCAT_WS(' ',
 IF(trim(firstname)
 ='',NULL,firstname),

 IF(trim(mi) = '', NULL, mi ||
 '.')
);

 fmi_lname := CONCAT_WS(' ',
 IF(fname_mi = '',NULL,
 fname_mi),

 IF(trim(lastname) = '', NULL,
 lastname)
);

 prefix_fmil := CONCAT_WS('. ',
 IF(trim(prefix) = '', NULL,
 prefix),

 IF(fmi_lname = '', NULL,
 fmi_lname)
);

 pfmil_suffix := CONCAT_WS(', ',
 IF (prefix_fmil = '', NULL,
 prefix_fmil),

 IF (trim(suffix) = '',
 NULL, suffix || '.')
);

 RETURN pfmil_suffix;

END;

$$

 LANGUAGE plpgsql;

Your First PL/pgSQL Function

[58]

PostgreSQL PL/pgSQL provides several more syntactical variants of these
conditional expressions. This introduction has focused on the most commonly used
ones. For a more complete discussion of the topic, visit http://www.postgresql.
org/docs/current/static/functions-conditional.html.

Loops with counters
The PL/pgSQL language provides a simple way to loop through some elements. The
following is a function that returns the nth Fibonacci sequence number:

CREATE OR REPLACE FUNCTION fib(n integer)

 RETURNS decimal(1000,0)

AS $$

 DECLARE counter integer := 0;

 DECLARE a decimal(1000,0) := 0;

 DECLARE b decimal(1000,0) := 1;

BEGIN

 IF (n < 1) THEN

 RETURN 0;

 END IF;

 LOOP

 EXIT WHEN counter = n;

 counter := counter + 1;

 SELECT b,a+b INTO a,b;

 END LOOP;

Chapter 3

[59]

 RETURN a;

END;

$$

 LANGUAGE plpgsql;

SELECT fib(4);

The previous code results in 3 as the output.

The highest Fibonacci number we can calculate with this function is 4785. If a value
of the parameter is larger than that, the result will not fit into the 1000 length decimal
we declared to return.

Just for the record, in the Fibonacci sequence each element in the sequence is the
sum of the previous 2 elements. Thus, the first few elements of the sequence should
be 0,1,1,2,3,5,8,13,21,34, and so on. There are a few PostgreSQL Fibonacci sequence
functions out there on the interwebs, but they use the dreaded recursive method. In
this case recursion is a Bad Thing™.

In this function, we also introduced default values to the variables in the declarations
section. When the function is invoked, the variables will be initially set to these values.

Also take a quick gander at the statement SELECT b,a+b INTO a,b. This statement
makes two variable assignments at the same time. It avoids the use of a third variable
while acting on both a and b.

For some additional looping syntax, take a look at the PostgreSQL documentation
page at http://www.postgresql.org/docs/current/static/plpgsql-control-
structures.html.

Looping through query results
Before we embark on this journey through query result loops, I think it is fair to
warn you that if you are using this method you are probably Doing It Wrong™.
This is one of the most processor and memory intensive operations that PostgreSQL
offers. There are exceedingly few reasons to iterate through a result set on the
database server that offset this cost. I would encourage you to think very hard about
how to implement the same idea using a function, values list in a query, temporary
table, and permanent table, or precompute the values in any way possible to avoid
this operation. So, do you still think you have an overwhelming reason to use this
technique? Ok, read on.

Your First PL/pgSQL Function

[60]

The following is the simple version:

FOR row IN EXECUTE

 'SELECT * FROM job_queue q WHERE NOT processed LIMIT 100'

LOOP

 CASE q.process_type

 WHEN 'archive_point_of_sale'

 THEN INSERT INTO hist_orders (...)

 SELECT ... FROM orders

 INNER JOIN order_detail ...

 INNER JOIN item ...;

 WHEN 'prune_archived_orders'

 THEN DELETE FROM order_detail

 WHERE order_id in (SELECT order_id FROM
 hist_orders);

 DELETE FROM orders

 WHERE order_id IN (SELECT order_id FROM
 hist_orders);

 ELSE

 RAISE NOTICE 'Unknown process_type: %', q.process_type;

 END;

 UPDATE job_queue SET processed = TRUE WHERE id = q.id;

END LOOP;

Chapter 3

[61]

The previous example shows a basic strategy pattern of processing messages in a
job queue. Using this technique, rows in a table contain a list of jobs that need to
be processed.

We introduce the EXECUTE statement here, too. The SELECT statement is a string
value. Using EXECUTE, we can dynamically build PL/pgSQL commands as strings
and then invoke them as statements against the database. This technique comes in
handy when we want to change the table name or other SQL keywords that make
up our statement. These parts of the SQL statement cannot be stored in variables,
and are not generally "changeable". With EXECUTE, we can change any part of the
statement we jolly well please.

The following is an example that comes from the PostgreSQL documentation that
shows dynamic commands running inside of a loop:

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$

DECLARE

 mviews RECORD;

BEGIN

 PERFORM cs_log('Refreshing materialized views...');

 FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY
 sort_key LOOP

 -- Now "mviews" has one record from cs_materialized_views

 PERFORM cs_log('Refreshing materialized view ' ||
 quote_ident(mviews.mv_name) || ' ...');

 EXECUTE 'TRUNCATE TABLE ' || quote_ident(mviews.mv_name);

 EXECUTE 'INSERT INTO ' || quote_ident(mviews.mv_name) || '
 ' || mviews.mv_query;

Your First PL/pgSQL Function

[62]

 END LOOP;

 PERFORM cs_log('Done refreshing materialized views.');

 RETURN 1;

END;

$$ LANGUAGE plpgsql;

The previous looping example shows a more complex function that refreshes the
data in some staging tables. These staging tables are designated "materialized views"
because the data is actually physically transferred to the staging tables. This method
is a common way to reduce query execution overhead for many presentations of
the same data. In this case, the inefficiency of looping is trivial compared to the
continued cost of repeated queries to the same data.

PERFORM versus SELECT
You may have noticed a statement in the previous example that we haven't covered
yet. PERFORM is the command to use when you want to just discard the results of a
statement. If the previous example were changed to:

SELECT cs_log("Done refreshing materialized views");

The query engine would return No destination for result data.

We could retrieve the results into variables and then proceed to ignore the variables,
but that is just a little too sloppy for my taste. By using the PERFORM statement, we
have indicated that ignoring the results was not accidental. We were happy with the
fact that the log was appended to blindly, and if it wasn't, oh well, we didn't fail to
continue the execution because of a log entry issue.

Chapter 3

[63]

Returning a record
All of our function examples so far have featured a simple scalar value in the RETURN
clause. For more complex return types, we have several choices. One option is to return
a set of records conforming to a table definition. For the sake of this example, we will
assume that you are in the middle of a big software development upgrade procedure
that uses a name/value pair table structure to store settings. You have been asked
to change the table structure from the key and value columns to a series of columns
where the column name is now the name of the key. By the way, you also need to
preserve the settings for every version of the software you have ever deployed.

Looking at the existing CREATE TABLE statement for the table you have to work with,
we find:

CREATE TABLE application_settings_old (
version varchar(200),
key varchar(200),
value varchar(2000));

When you run a select statement against the table, you find out that there are not
very many settings, but there have been quite a few versions of them. So you make a
new table that is a little more explicit.

CREATE TABLE application_settings_new (
version varchar(200),
full_name varchar(2000),
description varchar(2000),
print_certificate varchar(2000),
show_advertisements varchar(2000),
show_splash_screen varchar(2000));

Transforming the settings data into this new format can be accomplished with an
insert statement and a function that conveniently returns our data to us in the new
table format.

Let's go ahead and define the function:

CREATE OR REPLACE FUNCTION

 flatten_application_settings(app_version varchar(200))

RETURNS setof application_settings_new

AS $$

Your First PL/pgSQL Function

[64]

BEGIN

 -- Create a temporary table to hold a single row of data

 IF EXISTS (SELECT relname FROM pg_class WHERE
 relname='tmp_settings')

 THEN

 TRUNCATE TABLE tmp_settings;

 ELSE

 CREATE TEMP TABLE tmp_settings (LIKE
 application_settings_new);

 END IF;

 -- the row will contain all of the data for this application
 version

 INSERT INTO tmp_settings (version) VALUES (app_version);

 -- add the details to the record for this application version

 UPDATE tmp_settings

 SET full_name = (SELECT value

 FROM application_settings_old

 WHERE version = app_version

 AND key='full_name'),

 description = (SELECT value

 FROM application_settings_old

Chapter 3

[65]

 WHERE version = app_version

 AND key='description'),

 print_certificate = (SELECT value

 FROM application_settings_old

 WHERE version = app_version

 AND key='print_certificate'),

 show_advertisements = (SELECT value

 FROM application_settings_old

 WHERE version = app_version

 AND key='show_advertisements'),

 show_splash_screen = (SELECT value

 FROM application_settings_old

 WHERE version = app_version

 AND key='show_splash_screen');

 -- hand back the results to the caller

 RETURN QUERY SELECT * FROM tmp_settings;

END;

$$ LANGUAGE plpgsql;

The previous function returns a single row of data to the calling query. The row
contains all of the settings that were previously defined as key/value pairs, but now
are explicitly defined fields. The function and the final table could also be enhanced
to transform the data types of the settings to something more explicit. But hey, I'm
just a lowly book author, not a "real" developer, so I'll leave that one up to you.

Your First PL/pgSQL Function

[66]

We then proceed to use the function to do the transformation:

INSERT INTO application_settings_new
SELECT (flatten_application_settings(version)).*
FROM (
SELECT version
FROM application_settings_old
GROUP BY version)

And violá! The data is now available in tabular form in the new table structure.

Acting on function results
The previous example showed one way to retrieve and further process function
results. The following are a few more useful ways to call a function:

SELECT fib(55);
SELECT (flatten_application_settings('9.08.97')).*
SELECT * FROM flatten_application_settings('9.08.97');

Any of the previous methods will create a legal field list in PostgreSQL, which
in turn can be used in any way that fields in a simple SELECT statement on a table
are used.

The example from the previous section used the results of the flatten_
application_settings() function, a source of data for an INSERT statement. The
following is an example of how to use the same function as a data source for UPDATE:

UPDATE application_settings_new

 SET full_name = flat.full_name,

 description = flat.description,

 print_certificate = flat.print_certificate,

 show_advertisements = flat.show_advertisements,

 show_splash_screen = flat.show_splash_screen

 FROM flatten_application_settings('9.08.97') flat;

Chapter 3

[67]

Using the application version as a key, we can update the records in the new table.
Isn't that a really handy way to keep up with changes to the application settings,
while both the old and new applications are still active? I'll take any compliments in
the form of cash (or beer), please.

Summary
Writing functions in PostgreSQL is an extremely powerful tool. PostgreSQL
functions provide the ability to add functionality to the database core to increase
performance, security, and maintainability.

They can be written in just about any language that is available to the open source
community, and several that are proprietary. If the language that you would like to
write them in is not available, it can be made available quickly and easily through a
very robust and complete compatibility layer.

Returning Structured Data
In the previous chapter, we have seen functions that return single values. They
returned either a "scalar", simple types such as integer, text, or data, or a more
complex type similar to a row in the database table. In this chapter, we will expand
these concepts and show how you can return your data to the client in much more
powerful ways.

In this chapter, we will examine multiple rows of both scalar types, as well as learn
about several ways of defining complex types for function return values.

We will also examine differences between SETOF scalars, or rows and arrays of the
same. Later, we will also examine returning CURSORs, which are kind of "lazy"
tables, that is something that can be used to get a set of rows but may not yet have
actually evaluated or fetched the rows. As the modern world is not about rigidly
table-structured data, we will also examine ways of dealing with more complex data
structures, both predefined and dynamically created.

But let's start from a simple example and then add more features and variants
as we go.

Sets and arrays
Rowsets are very similar to arrays in many ways, but they mainly differ in how you
can use them. For most data manipulations, you want to use rowsets, as the SQL
language is designed to deal with them. Arrays, however, are most useful for static
storage. They are more complicated for client applications to use than rowsets, with
usability features missing such as no simple and straightforward built-in way to
iterate over them.

Returning Structured Data

[70]

Returning sets
When you write a set returning function, there are some differences from a normal
scalar function. Let's first take a look at returning a set of integers.

Returning a set of integers
We will revisit our Fibonacci number generating function, but this time we
will not return just the nth number, but the whole sequence of numbers up to
the nth number.

CREATE OR REPLACE FUNCTION fibonacci_seq(num integer)
 RETURNS SETOF integer AS $$
DECLARE
 a int := 0;
 b int := 1;
BEGIN
 IF (num <= 0)
 THEN RETURN;
 END IF;

 RETURN NEXT a;
 LOOP
 EXIT WHEN num <= 1;
 RETURN NEXT b;

 num = num - 1;
 SELECT b, a + b INTO a, b;
 END LOOP;
END;
$$ language plpgsql;

The first difference we see is that instead of returning a single integer value, this
function is defined as returning a SETOF integer.

Then if you examine the code carefully, you see that there are two different
types of RETURN statements. First is the ordinary RETURN function in the
following code snippet:

IF (num <= 0)
 THEN RETURN;

In this case it is used to terminate the function early if the length of desired sequence
of Fibonacci numbers is zero or less.

Chapter 4

[71]

The second kind of RETURN statement is used to return values and continue execution:

RETURN NEXT a;

You may have noticed that there are a few other things we did differently in this
Fibonacci example than we did earlier. First, we declared and initialized the variables
a and b inside the DECLARE section, instead of first declaring and then initializing
them. We also used the argument as a down counter instead of using a separate
variable for counting from zero and then comparing it with the argument.

Both of these techniques save a few lines of code and may make the code more
readable depending on your preferences. But the longer versions might be easier
to follow and understand, so we don't particularly endorse either way.

Using a set-returning function
A set-returning function (also known as a table function) can be used in most places
a table, view, or subquery can be used. They are a powerful and flexible way to
return your data.

You can call the function in the SELECT clause like you do with a scalar function:

postgres=# SELECT fibonacci_seq(3);
 fibonacci_seq

 0
 1
 1
(3 rows)

You can also call the function as part of the FROM clause:

postgres=# SELECT * FROM fibonacci_seq(3);
 fibonacci_seq

 0
 1
 1
(3 rows)

You can even call it in the WHERE clause:

postgres=# SELECT * FROM fibonacci_seq(3) WHERE 1 = ANY
 (SELECT fibonacci_seq(3));
 fibonacci_seq

Returning Structured Data

[72]

 0
 1
 1
(3 rows)

Using database side functions for all data access is a great way to secure your
application, help with performance, and allow for easy maintenance. Table functions
allow you to use functions in all cases where you would have been forced to use more
complex queries from the client if only scalar functions would have been available.

Returning rows from a function
It would often be very helpful to return back to the client even more information
than a set of integers. You may need all of the columns from an existing table, and
the simplest way to declare a return type for a function is to just use the table as part
of the return definition.

CREATE OR REPLACE FUNCTION installed_languages()
 RETURNS SETOF pg_language AS $$
BEGIN
 RETURN QUERY SELECT * FROM pg_language;
END;
$$ LANGUAGE plpgsql;

Notice that you still need the SETOF part, but instead of defining it as a set of
integers, we use pg_language which is a table.

You could also have used TYPE defined using the CREATE TYPE command or
even VIEW:

hannu=# select * from installed_languages();

-[RECORD 1]-+----------
lanname | internal
lanowner | 10
lanispl | f
lanpltrusted | f
lanplcallfoid | 0
laninline | 0
lanvalidator | 2246
lanacl |
-[RECORD 2]-+----------
lanname | c
lanowner | 10
lanispl | f

Chapter 4

[73]

lanpltrusted | f
lanplcallfoid | 0
laninline | 0
lanvalidator | 2247
lanacl |
-[RECORD 3]-+----------
lanname | sql
lanowner | 10
lanispl | f
lanpltrusted | t
lanplcallfoid | 0
laninline | 0
lanvalidator | 2248
lanacl |
-[RECORD 4]-+----------
lanname | plpgsql
lanowner | 10
lanispl | t
lanpltrusted | t
lanplcallfoid | 12596
laninline | 12597
lanvalidator | 12598
lanacl |
-[RECORD 5]-+----------
lanname | plpythonu
lanowner | 10
lanispl | t
lanpltrusted | f
lanplcallfoid | 17563
laninline | 17564
lanvalidator | 17565
lanacl |

Functions based on views
Creating a function based on a view definition is a very powerful and flexible way
of providing information to users. As an example of this, I will tell a story of how I
started a simple utility view for answering the question, "What queries are running
now and which ones have been running the longest time?" It evolved into a function
based on this view plus a few more views based on the function.

Returning Structured Data

[74]

The way to get all data to answer this question in PostgreSQL is by using the
following query:

hannu=# select * from pg_stat_activity;

-[RECORD 1]----+--------------------------------
datid | 17557
datname | hannu
pid | 8933
usesysid | 10
usename | postgres
application_name | psql
client_addr |
client_hostname |
client_port | -1
backend_start | 2013-03-19 13:47:45.920902-04
xact_start | 2013-03-19 14:05:47.91225-04
query_start | 2013-03-19 14:05:47.91225-04
state_change | 2013-03-19 14:05:47.912253-04
waiting | f
state | active
query | select * from pg_stat_activity;

The usual process is to use a variant of the following query, here already wrapped
into a view:

CREATE VIEW running_queries AS
SELECT
 CURRENT_TIMESTAMP - query_start as runtime,
 pid,
 usename,
 waiting,
 query
FROM pg_stat_activity
ORDER BY 1 DESC
LIMIT 10;

But soon you will notice, that putting this query into a view is not enough.
Sometimes you want to vary the number of lowest queries, sometimes you
don't want to have the full query text, but just the beginning, and so on.

Chapter 4

[75]

If you want to vary some parameters, the logical thing is to use a function instead of
a view, as follows:

CREATE OR REPLACE FUNCTION running_queries(rows int, qlen int)
 RETURNS SETOF running_queries AS
$$
BEGIN
 RETURN QUERY SELECT
 runtime,
 pid,
 usename,
 waiting,
 substring(query,1,qlen) as query
 FROM running_queries
 ORDER BY 1 DESC
 LIMIT rows;
END;
$$ LANGUAGE plpgsql;

As a security precaution, the default behavior of the pg_stat_activity view is
that only superusers can see what other users are running. Sometimes it may be
necessary to allow the non-superusers to see at least the type of query (SELECT,
INSERT, DELETE, or UPDATE) other users are running, but hide the exact contents.
To do so, you have to make two changes to the previous function.

First, replace the row for getting current_query with the following code snippet:

(CASE WHEN (usename= session_user)
 OR (select usesuper
 from pg_user
 where usename = session_user)
 THEN
 substring(query,1,qlen)
 ELSE
 substring(ltrim(query), 1, 6) || ' ***'
 END)as query

This code snippet checks each row to see if the user running the function has
permission to see the full query. If the user is a superuser, then he has permission
to see the full query. If the user is a regular user, he will only see the full query for
his queries. All other rows will only show the first six characters followed by *** to
mark it as a shortened query string.

Returning Structured Data

[76]

The other key point to allowing ordinary users to run the function is to grant them the
appropriate rights to do so. When a function is created, the default behavior is to run
with Security Invoker rights, which means that the function will be called with the
rights of the user who called it. To easily grant the correct rights to call the function, the
function needs to be created with Security Definer privileges. This causes the function
to execute with the privileges of the user that created the function, so creating the
function as a superuser will allow it to execute as a superuser.

Now you have a function which you can use to get the start of the five longest
running queries using the following query:

SELECT * FROM running_queries(5,25);

Or to get complete a query you can use:

SELECT * FROM running_queries(1000,1024);

You may want to define a few convenience views for the variants you use most.

CREATE OR REPLACE VIEW running_queries_tiny AS
SELECT * FROM running_queries(5,25);
CREATE VIEW running_queries_full AS
SELECT * FROM running_queries(1000,1024);

You may even redefine the original view to use the first version of the function.

CREATE OR REPLACE VIEW running_queries AS
SELECT * FROM running_queries(5,25);

This is usually not recommended, but it demonstrates three important things:

•	 Views and functions can have exactly the same name
•	 You can get a circular reference by basing a function on a view and then

basing a view on that function
•	 If you get a circular reference this way, you can't easily change

either definition

To resolve this, simply avoid circular references.

Even without circular references, there is still a dependency on the view called from
the function. If, for instance, you need to add a column to show the application name
to the running_queries view. The function needs to change as well.

CREATE OR REPLACE VIEW running_queries AS
SELECT
 CURRENT_TIMESTAMP - query_start as runtime,
 pid,

Chapter 4

[77]

 usename,
 waiting,
 query,
 application_name as appname
FROM pg_stat_activity
ORDER BY 1 DESC
LIMIT 10;

The view definition can be changed without an error, but the next time you try to run
the running_queries(int, int) function, you get an error.

hannu=# select * from running_queries(5,25);
ERROR: structure of query does not match function result type
DETAIL: Number of returned columns (5) does not match expected
 column count (6).
CONTEXT: PL/pgSQL function "running_queries" line 3 at RETURN
 QUERY

To fix this, you need to add the additional column to the function.

CREATE OR REPLACE FUNCTION running_queries(rows int, qlen int)
 RETURNS SETOF running_queries AS
$$
BEGIN
 RETURN QUERY SELECT
 runtime,
 pid,
 usename,
 waiting,
 (CASE WHEN (usename= session_user)
 OR (select usesuper
 from pg_user
 where usename = session_user)
 THEN
 substring(query,1,qlen)
 ELSE
 substring(ltrim(query), 1, 6) || ' ***'
 END) as query,
 appname
 FROM running_queries
 ORDER BY 1 DESC
 LIMIT rows;
END;
$$
LANGUAGE plpgsql
SECURITY DEFINER;

Returning Structured Data

[78]

OUT parameters and records
Using a pre-existing type, table, or view for compound return types is a simple
mechanism for returning more complex structures. However, there is often a need to
define the return type of the function with the function itself and not be dependent on
other objects. This is especially true when managing changes to a running application,
so over time two better ways to handle this have been added to PostgreSQL.

OUT parameters
Up until this point, all of the functions we have created have used parameters
that are defined as IN parameters. The IN parameters are meant to just pass
information into the function that can be used, but not returned. Parameters can
also be defined as OUT or INOUT parameters if you want the function to return
some information as well.

CREATE OR REPLACE FUNCTION positives(
 INOUT a int,
 INOUT b int,
 INOUT c int)
AS $$
BEGIN
 IF a < 0 THEN a = null; END IF;
 IF b < 0 THEN b = null; END IF;
 IF c < 0 THEN c = null; END IF;
END;
$$ LANGUAGE plpgsql;

When we run the previous function, notice that it only returns a single row of data.

hannu=# SELECT * FROM positives(-1, 1, 2);
-[RECORD 1]
a |
b | 1
c | 2

Returning records
If multiple rows of data are needed to be returned, a similar function returning a set
is achieved by adding RETURNS SETOF RECORD. This technique can only be used with
functions using INOUT or OUT arguments.

CREATE FUNCTION permutations(INOUT a int,
 INOUT b int,
 INOUT c int)

Chapter 4

[79]

RETURNS SETOF RECORD
AS $$
BEGIN
 RETURN NEXT;
 SELECT b,c INTO c,b; RETURN NEXT;
 SELECT a,b INTO b,a; RETURN NEXT;
 SELECT b,c INTO c,b; RETURN NEXT;
 SELECT a,b INTO b,a; RETURN NEXT;
 SELECT b,c INTO c,b; RETURN NEXT;
END;
$$ LANGUAGE plpgsql;

Running the permutations function returns the six rows we would expect:

hannu=# SELECT * FROM permutations(1, 2, 3);
-[RECORD 1]
a | 1
b | 2
c | 3
-[RECORD 2]
a | 1
b | 3
c | 2
-[RECORD 3]
a | 3
b | 1
c | 2
-[RECORD 4]
a | 3
b | 2
c | 1
-[RECORD 5]
a | 2
b | 3
c | 1
-[RECORD 6]
a | 2
b | 1
c | 3

This works well, but does seem a bit verbose for what is a pretty simple operation.
This is due to the fact that we can't directly call RETURN NEXT a.b.c, but need to first
assign values to variables declared by the INOUT incantations. We also want to avoid
the even clumsier syntax of tmp = a; a = b; b = tmp.

Returning Structured Data

[80]

Due to design decisions in the PL/pgSQL language, there is currently no good way
to construct the return structure at runtime, that is, no RETURN a,b,c.

However, let's try to do it anyway and see what happens.

Using RETURNS TABLE
You might think that if there are no visible OUT parameters in a function declared as
RETURNS TABLE(...), the following code might work:

CREATE FUNCTION permutations2(a int, b int, c int)
 RETURNS TABLE(a int, b int, c int)
AS $$
BEGIN
 RETURN NEXT a,b,c;
END;
$$ LANGUAGE plpgsql;

But when trying to do it this way, we get an error:

ERROR: parameter name "a" used more than once
CONTEXT: compilation of PL/pgSQL function "permutations2" near
 line 1

This error hints that the fields in the return table definition are also actually just OUT
parameters and the whole RETURNS TABLE syntax is just another way to spell CREATE
FUNCTION f(OUT ..., OUT...) RETURNS RECORD ….

This can be further verified by changing input parameters so that the definition can
be fed into PostgreSQL:

CREATE FUNCTION permutations2(ia int, ib int, ic int)
 RETURNS TABLE(a int, b int, c int)
AS $$
BEGIN
 RETURN NEXT a,b,c;
END;
$$ LANGUAGE plpgsql;

And when we try to create this, we get the following output:

ERROR: RETURN NEXT cannot have a parameter in function with OUT
 parameters
LINE 5: RETURN NEXT a,b,c;
 ^

Chapter 4

[81]

So yes, the fields of the table in the RETURNS definition are actually just OUT
parameters. We can try one last thing to get the function to construct the return
structure in the RETURN NEXT clause.

CREATE TYPE abc AS (a int, b int, c int);

CREATE FUNCTION permutations2(ia int, ib int, ic int)
 RETURNS SETOF abc
AS $$
BEGIN
 RETURN NEXT a,b,c;
END;
$$ LANGUAGE plpgsql;

And running the previous code yields the following output:

ERROR: RETURN NEXT must specify a record or row variable in
 function returning row
LINE 5: RETURN NEXT a,b,c;
 ^

Ok, this can't be done in this way either.

Fortunately, this is just a limitation of the PL/pgSQL language when creating the
RETURN value and not a PostgreSQL limitation. In the next chapter we see that,
for example, PL/Python can return complex data types in several ways without
any problems.

Returning with no predefined structure
Sometimes, you really do need to write a function where the return structure is
unknown. One nice thing about PostgreSQL function declarations is that you can
use the return type RECORD, which can be left undefined up to the moment the
function is called.

CREATE OR REPLACE FUNCTION run_a_query(query TEXT)
 RETURNS SETOF RECORD
AS $$
DECLARE
 retval RECORD;
BEGIN
 FOR retval IN EXECUTE query LOOP
 RETURN NEXT retval;
 END LOOP ;
END;
$$ LANGUAGE PLPGSQL;

Returning Structured Data

[82]

This is a function that lets a user execute a query; quite useless as such, but it could
be used as the basis for more useful functions that, for example, let users run queries
only at a certain time, or performs some checks on queries before running them.

If you try to simply run the query:

select * from run_a_query('select usename, usesysid from
 pg_user');

You will get the following error:

ERROR: a column definition list is required for functions
 returning "record"
LINE 1: select * from run_a_query('select usename, usesysid from
 pg_...
 ^

To use this kind of function, you need to tell PostgreSQL what the return values will
be by adding a column definition list at call time in the following way:

select * from run_a_query('select usename,usesysid from pg_user')
 as ("user" text, uid int);

So will this work? No, you will get the following error:

ERROR: wrong record type supplied in RETURN NEXT
DETAIL: Returned type name does not match expected type text in
 column 1.
CONTEXT: PL/pgSQL function run_a_query(text) line 6 at RETURN
 NEXT

Changing things a little more, we finally arrive at something that works.

hannu=# select * from run_a_query('select usename::text,usesysid::int
from pg_user') as
 ("user" text, uid int);
-[RECORD 1]--
user | postgres
uid | 10
-[RECORD 2]--
user | hannu
uid | 17573

What do we learn from this? PostgreSQL will let you return an arbitrary record from
a function, but it is very particular in how it does it. When you call the function,
you will need to be very deliberate about things, especially data types. PostgreSQL
will use default casts to convert data to different data types if it knows enough
information. But in a function such as this, much of that information is not known.

Chapter 4

[83]

Returning SETOF ANY
There is another way to define functions which can operate on and return incomplete
type definitions, the ANY* pseudo-types.

Let's define a function, which turns a simple one-dimensional PostgreSQL array of
any type into a set of rows with one element of the same type.

CREATE OR REPLACE FUNCTION array_to_rows(array_in ANYARRAY)
 RETURNS TABLE(row_out ANYELEMENT)
AS $$
BEGIN
 FOR i IN 1.. array_upper(array_in,1) LOOP
 row_out = array_in[i];
 RETURN NEXT ;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

This work nicely on an array of integers.

hannu=# select array_to_rows('{1,2,3}'::int[]);
-[RECORD 1]-+--
array_to_rows | 1
-[RECORD 2]-+--
array_to_rows | 2
-[RECORD 3]-+--
array_to_rows | 3

It also works nicely on an array of dates.

hannu=# select array_to_rows('{"1970-1-1","2012-12-12"}'::date[]);
-[RECORD 1]-+-----------
array_to_rows | 1970-01-01
-[RECORD 2]-+-----------
array_to_rows | 2012-12-12

It even works on arrays of records from user-defined tables.

hannu=# create table mydata(id serial primary key, data text);
NOTICE: CREATE TABLE will create implicit sequence
 "mydata_id_seq" for serial column "mydata.id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index
 "mydata_pkey" for table "mydata"
CREATE TABLE

hannu=# insert into mydata values(1, 'one'), (2,'two');

Returning Structured Data

[84]

INSERT 0 2
hannu=# select array_to_rows(array(select m from mydata m));
-[RECORD 1]-+--------
array_to_rows | (1,one)
-[RECORD 2]-+--------
array_to_rows | (2,two)

hannu=# select * from array_to_rows
 (array(select m from mydata m));
-[RECORD 1]
id | 1
data | one
-[RECORD 2]
id | 2
data | two

The two last select statements return a one-column table of type mydata, and a
two-column table of the same expanded into its component columns. This single
function was flexible enough to handle several different types of data without
any changes.

There is a more potent version of array_to_rows built into
PostgreSQL called unnest(). The built-in function is faster than
our sample one and can also deal with arrays with more than one
dimension:

hannu=# select unnest('{{1,2,3}, {4,5,6}}'::int[]);
-[RECORD 1]
unnest | 1
-[RECORD 2]
unnest | 2
-[RECORD 3]
unnest | 3
-[RECORD 4]
unnest | 4
-[RECORD 5]
unnest | 5
-[RECORD 6]
unnest | 6

Chapter 4

[85]

PostgreSQL has a weird array type, which can hold arrays of any number of
dimensions. It is even weirder than that, as the array slices in any dimension can
also start at any positive index (and they are by default 1-based). For example, an
array with indices ranging from -2 to 2 is produced by the following incantation:

hannu=# select '[-2:2]={1,2,3,4,5}'::int[];
-[RECORD 1]------------
int4 | [-2:2]={1,2,3,4,5}

To check that this really is so, use the following code snippet:

hannu=# select array_dims('[-2:2]={1,2,3,4,5}'::int[]);
-[RECORD 1]------
array_dims | [-2:2]

The third element of that array is 3, and that is the middle one.

Variadic argument lists
PostgreSQL also has a facility to write a function with a variable number of
arguments. This is accomplished by using VARIADIC.

CREATE OR REPLACE FUNCTION unnest_v(VARIADIC arr anyarray)
 RETURNS SETOF anyelement AS $$
BEGIN
 RETURN QUERY SELECT unnest(arr);
END;
$$ LANGUAGE plpgsql;

The previous code snippet is another simple example with little real world value, but
it shows how to construct a function with variable arguments.

hannu=# select unnest_v(1,2,3,4);
-[RECORD 1]
unnest_v | 1
-[RECORD 2]
unnest_v | 2
-[RECORD 3]
unnest_v | 3
-[RECORD 4]
unnest_v | 4

Returning Structured Data

[86]

Summary of RETURN SETOF variants
We learned that you can return table-like data sets from a function using one of the
following:

RETURNS ... RECORD structure INSIDE function
SETOF <type> From type definition DECLARE row variable of

ROW or RECORD type
ASSIGN to row variable
RETURN NEXT var;

SETOF <table/
view>

Same as table or view structure

SETOF RECORD Dynamic, using AS (name type, …)
at call site

SETOF RECORD Using OUT and INOUT function
arguments. Assign to OUT
variables.
RETURN NEXT ;

TABLE (...) Declared in-line in parentheses
after TABLE keyword, converted to
OUT variables for use in function.
Assigned to OUT variables from
the TABLE(...) part of the
declaration.
RETURN NEXT ;

Returning cursors
Another method of getting a tabular data out of function is by using a CURSOR.

CURSOR, or a portal as it is sometimes referenced in PostgreSQL documentation, is an
internal structure which contains a prepared query plan ready to return rows from
the query. Sometimes the cursor needs to retrieve all the data for the query at once,
but for many queries it does lazy fetching. For example, queries that need to scan
all of the data in a table such as SELECT * FROM xtable, only read as much data as
needed for each FETCH from the cursor.

In plain SQL, CURSOR is defined as follows:

DECLARE mycursor CURSOR FOR <query >;

Chapter 4

[87]

And later the rows are fetched using the following statement:

FETCH NEXT FROM mycursor;

While you can use a cursor to handle the data from a set returning function the usual
way, by simply declaring the cursor as DECLARE mycursor CURSOR FOR SELECT *
FROM mysetfunc();, it is many times more beneficial to have the function itself just
return a cursor.

You would want to do this if you need different cursors based on argument values,
or if you need to return dynamically structured data out of a function without
defining the structure when calling the function.

The cursor in PL/pgSQL is represented by a variable of type refcursor and must be
declared in one of the following three ways:

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) IS SELECT * FROM tenk1 WHERE
 unique1 = key;

The first variant declares an unbound cursor which needs to be bound to a query at
OPEN time. The two remaining variants declare a cursor bound to a query.

You can read a good technical overview on using cursors
in PL/pgSQL functions from the official PostgreSQL
documentation at http://www.postgresql.org/
docs/current/static/plpgsql-cursors.html.

One thing to note about the documentation is that you don't really need to "return"
the cursor, at least not now.

The documentation states:

"The following example shows one way to return multiple cursors from a single
function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF
 refcursor AS $$

BEGIN

 OPEN $1 FOR SELECT * FROM table_1;

 RETURN NEXT $1;

Returning Structured Data

[88]

 OPEN $2 FOR SELECT * FROM table_2;

 RETURN NEXT $2;

END;

$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.

BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;

FETCH ALL FROM b;

COMMIT;"

You could also write the function myfunc using OUT parameters:

CREATE FUNCTION myfunc2(cur1 refcursor, cur2 refcursor)
RETURNS VOID AS $$
BEGIN
 OPEN cur1 FOR SELECT * FROM table_1;
 OPEN cur2 FOR SELECT * FROM table_2;
END;
$$ LANGUAGE plpgsql;

You would still run the function exactly the same as the function returning the
cursor variable.

Iterating over cursors returned from another
function
To wrap up our cursors discussion, let's go through an example of returning a cursor
and then iterating over the returned cursor in another PL/pgSQL function:

1.	 First, let's create a five row table and fill it with data:
create table fiverows(id serial primary key, data text);
insert into fiverows(data) values ('one'), ('two'),
 ('three'), ('four'), ('five');

Chapter 4

[89]

2.	 Next, let's define our cursor returning function. This function will open a
cursor for a query based on its argument and then returns that cursor:
CREATE FUNCTION curtest1(cur refcursor, tag text)
 RETURNS refcursor
AS $$
BEGIN
 OPEN cur FOR SELECT id, data || '+' || tag FROM
 fiverows;
 RETURN cur;
END;
$$ LANGUAGE plpgsql;

3.	 Next, we define a function which uses the function we just created to open
two additional cursors and then process the query results. To show we are
not cheating and that the function really creates the cursors, we use the
function twice and iterate over the results in parallel:
CREATE FUNCTION curtest2(tag1 text, tag2 text)
 RETURNS SETOF fiverows
AS $$
DECLARE
 cur1 refcursor;
 cur2 refcursor;
 row record;
BEGIN
 cur1 = curtest1(NULL, tag1);
 cur2 = curtest1(NULL, tag2);
 LOOP
 FETCH cur1 INTO row;
 EXIT WHEN NOT FOUND ;
 RETURN NEXT row;
 FETCH cur2 INTO row;
 EXIT WHEN NOT FOUND ;
 RETURN NEXT row;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

By passing in NULL to the first parameters of curtest1, PostgreSQL automatically
generates the cursor names so that multiple invocations of this function will not get
name conflicts with any other functions which also create cursors.

Returning Structured Data

[90]

Wrap up of functions returning a cursor(s)
The pros of using cursors are as follows:

•	 Cursors are a useful tool if you don't want to always execute the query and
wait for the full resultset before returning from a function

•	 They are also the only way currently to return multiple resultsets out of a
user-defined function

The cons of using cursors are as follows:

•	 They mainly work for passing data between functions on the server and you
are still limited to one recordset per call returned to the database client

•	 They are sometimes confusing to use, and bound and unbound cursors are
not always interchangeable

Other ways to work with structured data
We now have covered the traditional ways of returning sets of structured data
from functions. We will now start with the more interesting part. Other methods
of passing around complex data structures have evolved in the world today.

Complex data types for modern world – XML
and JSON
In the real world, most of the data is not in a single table and the database is not the
main thing that most programmers focus on. Often, they don't even think of it at all,
or at least would rather not think about it.

If you are a database developer working on the database side of things, it is often
desirable to talk to the clients (be it web or application developers as your client,
or programs as database clients) in the language they speak. Currently, the two most
widely spoken data languages by the web applications and their developers are XML
and JSON.

Both XML and JSON are text-based data formats, and as such, they can be
easily saved into fields of type text. PostgreSQL, being a DBMS built for
being user-extendable, also has extensive support for both of these formats.

Chapter 4

[91]

XML data type and returning data as XML
from functions
One of the extensions added to PostgreSQL to support XML data is a native XML
data type. While the XML data type is largely just a text field, it does differ from text
in the following ways:

•	 The XML stored in an XML field is checked to be well formed
•	 There are support functions for producing and working with known

well-formed XML

An XML value can be produced in a couple of ways including the SQL
standard method.

XMLPARSE ({ DOCUMENT | CONTENT } value)

PostgreSQL also has a specific syntax that will also produce an XML value.

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

An XML value can be easily converted to a text representation by using the
XMLSERIALIZE function.

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

Additionally, PostgreSQL allows you to simply cast the XML value as text.

The full description of the XML data type and it's associated functions
is at http://www.postgresql.org/docs/current/static/
datatype-xml.html. As each version of PostgreSQL has improved,
the support for XML has also improved.

There are several *_to_xml functions in PostgreSQL, which take as input either a
SQL query or a table or view and return its corresponding XML representation.

Let's look at this using the fiverows table we defined previously in the
cursors section.

First, let's get the table data as XML:

hannu=# select table_to_xml('fiverows',true, false, '') as s;
-[RECORD 1]---
s | <fiverows xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance">
 |

Returning Structured Data

[92]

 | <row>
 | <id>1</id>
 | <data>one</data>
 | </row>
 |
 | <row>
 | <id>2</id>
 | <data>two</data>
 | </row>
 |
 | <row>
 | <id>3</id>
 | <data>three</data>
 | </row>
 |
 | <row>
 | <id>4</id>
 | <data>four</data>
 | </row>
 |
 | <row>
 | <id>5</id>
 | <data>five</data>
 | </row>
 |
 | </fiverows>
 |

If you have a client that can handle XML, then the *_to_xml functions can be the way
to return your complex data.

Another nice thing about *_to_xml functions is that you can create a function which
returns several different XML documents in one go, and thus return data rows with
different structures. A good example would be a payment order and rows, where the
first record returned by the function is the XML for the order header followed by
one or more records of XML for order rows, all returned from the same function
in one call.

There are currently five variants of *_to_xml functions:

cursor_to_xml(cursor refcursor, count integer,
 nulls bool, tableforest bool, targetns text)
query_to_xml(query text,
 nulls bool, tableforest bool, targetns text)
table_to_xml(tbl regclass,
 nulls boolean, tableforest boolean, targetns text)
schema_to_xml(schema name,

Chapter 4

[93]

 nulls boolean, tableforest boolean, targetns text)
database_to_xml(nulls boolean, tableforest bool, targetns text)

The cursor_to_xml(...) function which iterates over an open cursor is
recommended for large data sets, as it can convert the data in chunks of rows
without first accumulating all data in memory.

The next three functions return a string representing either a SQL query, a table
name, or a schema name, and return all data from the named object. The table_
to_xml() function also works on views. Then there is the database_to_xml(...)
function which converts all of the current database to XML document. However, a
common result of running it on a production database is an out of memory error:

hannu=# select database_to_xml(true, true, 'n');
ERROR: out of memory
DETAIL: Failed on request of size 1024.

Returning data in the JSON format
In PostgreSQL 9.2, there is a new native data type for JSON values. This new support
for JSON is following the same growth pattern as XML. It initially started with two
functions for converting arrays and records to JSON format, but in PostgreSQL 9.3
there will be more functions.

The current functions are row_to_json(record, bool) for converting any record to
JSON, and array_to_json(anyarray, bool) for converting any array to JSON.

The following are some simple examples of using these functions:

hannu=# select array_to_json(array[1,2,3]);
-[RECORD 1]-+--------
array_to_json | [1,2,3]

hannu=# select * from test;
-[RECORD 1]--------------------
id | 1
data | 0.26281
tstampt | 2012-04-05 13:21:03.235
-[RECORD 2]--------------------
id | 2
data | 0.1574
tstampt | 2012-04-05 13:21:05.201

hannu=# select row_to_json(t) from test t;

Returning Structured Data

[94]

-[RECORD 1]---

row_to_json | {"id":1,"data":0.26281,"tstampt":"2012-04-05
 13:21:03.235"}
-[RECORD 2]---

row_to_json | {"id":2,"data":0.1574,"tstampt":"2012-04-05
 13:21:05.201"}

These functions are very useful as they enable us to write functions returning data
much more complex than would be possible using the standard RETURNS TABLE
syntax, but the real power of these functions comes from being able to convert
arbitrarily complex rows.

Let's first create a simple table with some data:

create table test(
 id serial primary key,
 data text,
 tstamp timestamp default current_timestamp
);
insert into test(data) values(random()), (random());

Now, let's create another table, which has one column with the data type of the
previous table, and insert rows from that table in the new table:

hannu=# create table test2(
hannu(# id serial primary key,
hannu(# data2 test,
hannu(# tstamp timestamp default current_timestamp
hannu(#);
hannu=# insert into test2(data2) select test from test;
INSERT 0 2

hannu=# select * from test2;
-[RECORD 1]------------------------------------
id | 5
data2 | (1,0.26281,"2012-04-05 13:21:03.235204")
tstamp | 2012-04-30 15:42:11.757535
-[RECORD 2]------------------------------------
id | 6
data2 | (2,0.15740,"2012-04-05 13:21:05.2033")
tstamp | 2012-04-30 15:42:11.757535

Chapter 4

[95]

Now, let's see how row_to_json() handles that:

hannu=# select row_to_json(t2, true) from test2 t2;
 row_to_json

 {"id":5,
 "data2":{"id":1,"data":"0.26281",
 "tstamp":"2012-04-05 13:21:03.235204"},
 "tstamp":"2012-04-30 15:42:11.757535"}
 {"id":6,
 "data2":{"id":2,"data":"0.15740",
 "tstamp":"2012-04-05 13:21:05.2033"},
 "tstamp":"2012-04-30 15:42:11.757535"}
(2 rows)

The result was converted to JSON with no problems.

Just to be sure, let's push the complexity up a bit more and create a table test3,
which has an array of table2 rows as its data value:

create table test3(
 id serial primary key,
 data3 test2[],
 tstamp timestamp default current_timestamp
);
insert into test3(data3)
select array(select test2 from test2);

Let's see if row_to_json still works:

select row_to_json(t3, true) from test3 t3;
--
{"id":1,
 "data3":[{"id":1,
 "data2":{"id":1,
 "data":"0.262814193032682",
 "tstamp":"2012-04-05 13:21:03.235204"},
 "tstamp":"2012-04-05 13:25:03.644497"
 },
 {"id":2,
 "data2":{"id":2,
 "data":"0.157406373415142",
 "tstamp":"2012-04-05 13:21:05.2033"},
 "tstamp":"2012-04-05 13:25:03.644497"
 }
],
 "tstamp":"2012-04-16 14:40:15.795947"}
(1 row)

Returning Structured Data

[96]

Yes it does!

Well, actually I had to manually format it a little, as the prettyprint flag to
row_to_json() only forks for top level, and the second row of the result (the one
following "data3") was all on one line. But JSON itself was completely functional!

Summary
The main points we learned in this chapter are:

•	 You can return multiple rows
•	 You can return multiple rows of complex data, similar to a SELECT query
•	 You can return several sets of tables and have them possibly evaluated in a

lazy manner by using refcursors
•	 You can return data as complex as you want using either XML or JSON

So there really are very few reasons for not using database functions as your main
interaction mechanism with the database. In the next chapter, we will learn how to
call functions when different types of events occur in the database.

PL/pgSQL Trigger Functions
While it is generally a good practice to keep related code together and avoid
"hidden" actions as part of main application code flows, there are also valid
cases where it is a good practice to add some kind of general or cross-application
functionality to the database using automated actions which happen each and every
time a table is modified. That is, the actions are part of your data model and not your
application code and you want to be sure that it is not possible to forget or bypass
them in a similar way that constraints make it impossible to insert invalid data.

The tool for adding automated function calls to a table modifying event is called a
trigger. Triggers are especially useful for cases where there are multiple different
client applications—possibly from different sources and using different programming
styles—accessing the same data using multiple different functions or straight SQL.

In PostgreSQL a trigger is defined in two steps:

1.	 Define a trigger function using CREATE FUNCTION
2.	 Bind this trigger function to a table using CREATE TRIGGER

Creating the trigger function
The trigger function definition looks mostly like an ordinary function definition,
except that it has a return value type trigger, and it does not take any arguments:

CREATE FUNCTION mytriggerfunc() RETURNS trigger AS $$ …

Trigger functions are passed information about their calling environment through a
special TriggerData structure, which in the case of PL/pgSQL is accessible through
a set of local variables. The local variables, OLD and NEW, represent the row the trigger
is in the before and after states of the triggering event. Additionally, there are several
other local variables starting with the prefix TG_ such as TG_WHEN or TG_TABLE_NAME
for general context. Once your trigger function is defined, you can bind it to a
specific set of actions on a table.

PL/pgSQL Trigger Functions

[98]

Creating the trigger
The simplified syntax for creating a user-defined TRIGGER statement is given
as follows:

CREATE TRIGGER name
 { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FOR [EACH] { ROW | STATEMENT }]
 EXECUTE PROCEDURE function_name (arguments)

In the preceding code the event is one of INSERT, UPDATE, DELETE, or TRUNCATE.
There are a few more options which we will come back to in a later section.

The "arguments" seemingly passed to the trigger function in the trigger definition
are not used as arguments when calling the trigger. Instead, they are available to
trigger function as a text array (text[]) in variable TG_ARGV (length of this array is in
TG_NARGS). Let's start slowly investigating how triggers and trigger functions work.

First, we will use a simple trigger example and move to more complex examples
step-by-step.

Simple "Hey, I'm called" trigger
The first trigger we work on simply sends back a notice to the database client each
time the trigger is fired and provides some feedback on its firing conditions:

CREATE OR REPLACE FUNCTION notify_trigger()
 RETURNS TRIGGER AS $$
BEGIN
 RAISE NOTICE 'Hi, I got % invoked FOR % % % on %',
 TG_NAME,
 TG_LEVEL,
 TG_WHEN,
 TG_OP,
 TG_TABLE_NAME;
END;
$$ LANGUAGE plpgsql;

Next, we need a table to bind this function to the following:

CREATE TABLE notify_test(i int);

Chapter 5

[99]

And we are ready to define the trigger. As we try to be simple here, we define a
trigger which is invoked on INSERT and which calls the function once on each row:

CREATE TRIGGER notify_insert_trigger
 AFTER INSERT ON notify_test
 FOR EACH ROW
EXECUTE PROCEDURE notify_trigger();Let's test it out.postgres=# INSERT
INTO notify_test VALUES(1),(2);
NOTICE: Hi, I got notify_insert_trigger invoked FOR ROW AFTER INSERT
on notify_test
ERROR: control reached end of trigger procedure without RETURN
CONTEXT: PL/pgSQL function notify_trigger()

Hmm. It seems we need to return something from the function even though it is not
needed for our purposes. The function definition says CREATE FUNCTION … RETURNS
trigger but we definitely cannot return a trigger from a function.

Back to the documentation!

OK, here it is. The trigger needs to return a value of a ROW or RECORD type and it is
ignored in AFTER triggers. For now, let's just return NEW as this is the right type and
always present even though it will be NULL in the DELETE trigger:

CREATE OR REPLACE FUNCTION notify_trigger()
RETURNS TRIGGER AS $$
BEGIN
 RAISE NOTICE 'Hi, I got % invoked FOR % % % on %',
 TG_NAME,
 TG_LEVEL, TG_WHEN, TG_OP, TG_TABLE_
NAME;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

We could have equally well used RETURN NULL; here as the return value of AFTER
triggers is ignored anyway:

A new test:postgres=# INSERT INTO notify_test VALUES(1),(2);
NOTICE: Hi, I got notify_insert_trigger invoked FOR ROW AFTER INSERT
on notify_test
NOTICE: Hi, I got notify_insert_trigger invoked FOR ROW AFTER INSERT
on notify_test
INSERT 0 2

PL/pgSQL Trigger Functions

[100]

As we see, the trigger function is indeed called once for each row inserted, so let's
use the same function to also report UPDATE and DELETE functions:

CREATE TRIGGER notify_update_trigger
 AFTER UPDATE ON notify_test
 FOR EACH ROW
EXECUTE PROCEDURE notify_trigger();

CREATE TRIGGER notify_delete_trigger
 AFTER DELETE ON notify_test
 FOR EACH ROW
EXECUTE PROCEDURE notify_trigger();

Check if the preceding code works.

First, let's test the update trigger:

postgres=# update notify_test set i = i * 10;
NOTICE: Hi, I got notify_update_trigger invoked FOR ROW AFTER UPDATE
on notify_test
NOTICE: Hi, I got notify_update_trigger invoked FOR ROW AFTER UPDATE
on notify_test
UPDATE 2

Works fine—we get a notice for two invocations of our trigger function.

And now delete:

postgres=# delete from notify_test;
NOTICE: Hi, I got notify_delete_trigger invoked FOR ROW AFTER DELETE
on notify_test
NOTICE: Hi, I got notify_delete_trigger invoked FOR ROW AFTER DELETE
on notify_test
DELETE 2

If we only want to be notified each time an operation is performed on the table, the
preceding code is enough. One small improvement can be made in how we define the
triggers. Instead, of creating one trigger for each of INSERT, UPDATE, or DELETE, we can
create a single trigger to be called for any of them. So let's replace the previous three
triggers with just the following:

 CREATE TRIGGER notify_trigger
 AFTER INSERT OR UPDATE OR DELETE
 ON notify_test
 FOR EACH ROW
EXECUTE PROCEDURE notify_trigger();

Chapter 5

[101]

The ability to put more than one of INSERT, OR UPDATE, OR DELETE in the same
trigger definition is a PostgreSQL extension to SQL standard. Since the action part of
the trigger definition is non-standard anyway, especially when using a PL/pgSQL
trigger function, this should not be a problem.

Let's now drop the individual triggers truncate the table and test again:

postgres=# DROP TRIGGER notify_insert_trigger ON notify_test;
DROP TRIGGER
postgres=# DROP TRIGGER notify_update_trigger ON notify_test;
DROP TRIGGER
postgres=# DROP TRIGGER notify_delete_trigger ON notify_test;
DROP TRIGGER
postgres=# TRUNCATE notify_test;
TRUNCATE TABLE
postgres=# INSERT INTO notify_test VALUES(1);
NOTICE: Hi, I got notify_trigger invoked FOR ROW AFTER INSERT on
notify_test
INSERT 0 1

Works fine, but this reveals one weakness: we did not get any notification on
TRUNCATE!

Unfortunately, we cannot simply add OR TRUNCATE in the preceding trigger
definition. The TRUNCATE command does not act on single rows, and so FOR EACH
ROW triggers make no sense for truncate and are not supported.

You need to have a separate trigger definition for TRUNCATE. Fortunately, we can still
use the same function, at least for this simple "Hey, I'm called!" trigger:

CREATE TRIGGER notify_truncate_trigger
 AFTER TRUNCATE ON notify_test
 FOR EACH STATEMENT
EXECUTE PROCEDURE notify_trigger();

And now we get a notification on TRUNCATE as well:

postgres=# TRUNCATE notify_test;
NOTICE: Hi, I got notify_truncate_trigger invoked FOR STATEMENT AFTER
TRUNCATE on notify_test
TRUNCATE TABLE

While getting these messages at each Data Management Language (DML) operation
is cool, it has little production value.

So, let's develop this a bit further and log the event in an audit log table instead of
sending something back to the user.

PL/pgSQL Trigger Functions

[102]

The audit trigger
One of the most common uses of triggers is logging data changes to tables in a
consistent and transparent manner. When creating an audit trigger, we first must
decide what we want to log.

A logical set of things that can be logged are: who changed the data, when the data
was changed, and what operation changed the data. This information can be saved
in the following table:

CREATE TABLE audit_log (
 username text, -- who did the change
 event_time_utc timestamp, -- when the event was recorded
 table_name text, -- contains schema-qualified table name
 operation text, -- INSERT, UPDATE, DELETE or TRUNCATE
 before_value json, -- the OLD tuple value
 after_value json -- the NEW tuple value
);

Some additional explanations on what we will log are as follows:

•	 The username will get the SESSION_USER variable, so we know who was
logged in and not which role he had potentially assumed using SET ROLE.

•	 event_time_utc will contain the event time converted to Coordinated
Universal Time(UTC) so that all strange date arithmetic around daylight
saving change times can be avoided.

•	 table_name will be in format schema.table.
•	 Operation will be directly from TG_OP, though it could be just the first

character (I/U/D/T) without losing any information.
•	 Finally, the before and after images of rows are stored as rows converted

to json which is available as its own data type starting PostgreSQL Version
9.2 for easy human-readable representation of ROW values.

Next, the trigger function:

CREATE OR REPLACE FUNCTION audit_trigger()
 RETURNS trigger AS $$
DECLARE
 old_row json := NULL;
 new_row json := NULL;
BEGIN
 IF TG_OP IN ('UPDATE','DELETE') THEN
 old_row = row_to_json(OLD);

Chapter 5

[103]

 END IF;
 IF TG_OP IN ('INSERT','UPDATE') THEN
 new_row = row_to_json(NEW);
 END IF;
 INSERT INTO audit_log(
 username,
 event_time_utc,
 table_name,
 operation,
 before_value,
 after_value
) VALUES (
 session_user,
 current_timestamp AT TIME ZONE 'UTC',
 TG_TABLE_SCHEMA || '.' || TG_TABLE_NAME,
 TG_OP,
 old_row,
 new_row
);
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

The conditional expressions of checking the operations at the beginning
of the function is needed to overcome the fact that NEW and OLD are not
NULL for DELETE and INSERT triggers correspondingly. Rather, they
are unassigned. Using an unassigned variable in any other way except
assigning to it in PL/pgSQL results in an error.

We are now ready to define our new logging trigger:

CREATE TRIGGER audit_log
 AFTER INSERT OR UPDATE OR DELETE
 ON notify_test
 FOR EACH ROW
EXECUTE PROCEDURE audit_trigger();

Running a small test, we remove our original notify triggers from the notify_test
table and perform a few simple operations:

postgres=# DROP TRIGGER notify_trigger ON notify_test;
DROP TRIGGER
postgres=# DROP TRIGGER notify_truncate_trigger ON notify_test;
DROP TRIGGER
postgres=# TRUNCATE notify_test;

PL/pgSQL Trigger Functions

[104]

TRUNCATE TABLE
postgres=# INSERT INTO notify_test VALUES (1);
INSERT 0 1
postgres=# UPDATE notify_test SET i = 2;
UPDATE 1
postgres=# DELETE FROM notify_test;
DELETE 1
postgres=# SELECT * FROM audit_log;
-[RECORD 1]--+---------------------------
username | postgres
event_time_utc | 2013-04-14 13:14:18.501529
table_name | public.notify_test
operation | INSERT
before_value |
after_value | {"i":1}
-[RECORD 2]--+---------------------------
username | postgres
event_time_utc | 2013-04-14 13:14:18.51216
table_name | public.notify_test
operation | UPDATE
before_value | {"i":1}
after_value | {"i":2}
-[RECORD 3]--+---------------------------
username | postgres
event_time_utc | 2013-04-14 13:14:18.52331
table_name | public.notify_test
operation | DELETE
before_value | {"i":2}
after_value |

This works well enough. Depending on your needs, this function will likely need
some tweaking. Enough of just watching and recording of DML, it's time to start
influencing what goes on there.

Disallowing DELETE
What if our business requirements are such that data can only be added and
modified in some tables, but not deleted?

One way to handle this would be to just revoke the DELETE right on these tables
from all users (remember to also revoke DELETE from PUBLIC), but this can also be
achieved using triggers.

Chapter 5

[105]

A generic cancel trigger can be written as follows:

CREATE OR REPLACE FUNCTION cancel_op()
 RETURNS TRIGGER AS $$
BEGIN
 IF TG_WHEN = 'AFTER' THEN
 RAISE EXCEPTION 'YOU ARE NOT ALLOWED TO % ROWS IN %.%',
 TG_OP, TG_TABLE_SCHEMA, TG_TABLE_NAME;
 END IF;
 RAISE NOTICE '% ON ROWS IN %.% WON''T HAPPEN',
 TG_OP, TG_TABLE_SCHEMA, TG_TABLE_NAME;
 RETURN NULL;
END;
$$ LANGUAGE plpgsql;

The same trigger function can be used for both BEFORE and AFTER triggers. If you
use it as a BEFORE trigger the operation is skipped with a message, but if used as an
AFTER trigger, an ERROR is raised and the current (sub) transaction is rolled back.

It would also be easy to add logging of the delete attempts into a table in this same
trigger function to help enforce company policy—just add INSERT to a log table
similar to the previous example.

Of course, you can make one or both messages more menacing if you want, by
adding something as ''Authorities will be notified!'' or ''You will be terminated!''.

Let's take a look at how this works in the following code:

postgres=# CREATE TABLE delete_test1(i int);
CREATE TABLE
postgres=# INSERT INTO delete_test1 VALUES(1);
INSERT 0 1
postgres=# CREATE TRIGGER disallow_delete AFTER DELETE ON delete_test1
FOR EACH ROW EXECUTE PROCEDURE cancel_op();
CREATE TRIGGER
postgres=# DELETE FROM delete_test1 WHERE i = 1;
ERROR: YOU ARE NOT ALLOWED TO DELETE ROWS IN public.delete_
test1Notice that the AFTER trigger raised an error.postgres=# CREATE
TRIGGER skip_delete BEFORE DELETE ON delete_test1 FOR EACH ROW
EXECUTE PROCEDURE cancel_op();
CREATE TRIGGER
postgres=# DELETE FROM delete_test1 WHERE i = 1;
NOTICE: DELETE ON ROWS IN public.delete_test1 WON'T HAPPEN
DELETE 0

PL/pgSQL Trigger Functions

[106]

This time, the BEFORE trigger canceled the delete and the AFTER trigger, though still
there, was not reached.

The same trigger could also be used to enforce a no-update policy, or even disallow
inserts to some table that has to have immutable contents.

Disallowing TRUNCATE
You may have noticed that the preceding trigger can easily be bypassed for DELETE if
you delete everything using TRUNCATE.

While you cannot simply skip TRUNCATE by returning NULL (this works only for
row-level BEFORE triggers), you still can make it impossible by raising an error
if TRUNCATE is attempted. Create an AFTER trigger using the same function used
previously for DELETE:

CREATE TRIGGER disallow_truncate
 AFTER TRUNCATE ON delete_test1
 FOR EACH STATEMENT
EXECUTE PROCEDURE cancel_op();

And here you are, with no more TRUNCATE:

postgres=# TRUNCATE delete_test1;
ERROR: YOU ARE NOT ALLOWED TO TRUNCATE ROWS IN public.delete_test1

Of course, you could also raise the error in a BEFORE trigger, but then you would
need to write your own unconditional raise-error trigger function instead of
cancel_op().

Modifying the NEW record
Another form of auditing frequently used is to log information in fields in the same
row as the data. As an example, let's define a trigger which logs the time and active
user in fields last_changed_at and last_changed_by fields at each INSERT and
UPDATE. In row-level BEFORE triggers you can modify what actually gets written by
changing the NEW record. You can either assign values to some fields or even return
a different record with the same structure. For example, if you return OLD from the
UPDATE trigger, you effectively make sure that the row can't be updated.

Chapter 5

[107]

Timestamping trigger
To form the basis of our audit logging in the table, we start with creating a trigger
that sets the user who made the last change and when the change occurred:

CREATE OR REPLACE FUNCTION changestamp()
 RETURNS TRIGGER AS $$
BEGIN
 NEW.last_changed_by = SESSION_USER;
 NEW.last_changed_at = CURRENT_TIMESTAMP;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

Of course, this works only on a table which has correct fields:

CREATE TABLE modify_test(
 id serial PRIMARY KEY,
 data text,
 created_by text default SESSION_USER,
 created_at timestamp default CURRENT_TIMESTAMP,
 last_changed_by text default SESSION_USER,
 last_changed_at timestamp default CURRENT_TIMESTAMP
);

CREATE TRIGGER changestamp
 BEFORE UPDATE ON modify_test
 FOR EACH ROW
EXECUTE PROCEDURE changestamp();

Now, let's take a look at our newly created trigger:

postgres=# INSERT INTO modify_test(data) VALUES('something');
INSERT 0 1
postgres=# UPDATE modify_test SET data = 'something else' WHERE id =
1;
UPDATE 1
postgres=# SELECT * FROM modify_test; -[RECORD 1]---+--------------

id | 1
data | something else
created_by | postgres
created_at | 2013-04-15 09:28:23.966179
last_changed_by | postgres
last_changed_at | 2013-04-15 09:28:31.937196

PL/pgSQL Trigger Functions

[108]

Immutable fields trigger
When you are depending on the fields in the rows as part of your audit record,
you need to ensure that the values reflect reality. We were able to make sure that
the last_changed_ * fields always contain the correct value, but how about the
created_by and created_at values? These can easily be changed in later updates, but
they should never change. Even initially, they can be set to false values, since default
values can be easily overridden by giving any other value in the INSERT statement.

So, let's modify our changestamp() trigger function into a usagestamp() function,
which makes sure that initial values are what they should be and that they stay
like that:

CREATE OR REPLACE FUNCTION usagestamp()
 RETURNS TRIGGER AS $$
BEGIN
 IF TG_OP = 'INSERT' THEN
 NEW.created_by = SESSION_USER;
 NEW.created_at = CURRENT_TIMESTAMP;
 ELSE
 NEW.created_by = OLD.created_by;
 NEW.created_at = OLD.created_at;
 END IF;

 NEW.last_changed_by = SESSION_USER;
 NEW.last_changed_at = CURRENT_TIMESTAMP;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

In case of INSERT, we set created_* fields to the needed values regardless of what
the INSERT query tries to set them to. In case of UPDATE, we just carry over the old
values, again overriding any attempted changes.

This function then needs to be used for creating a BEFORE INSERT OR UPDATE trigger:

CREATE TRIGGER usagestamp
 BEFORE INSERT OR UPDATE ON modify_test
 FOR EACH ROW
EXECUTE PROCEDURE usagestamp();

Chapter 5

[109]

Now, let's test out trying to update the created audit log information. First, we will
need to drop the original trigger so we don't have two trigger firing on the same
table. Then, we will try to change the values of created_by and created_at:

postgres=# DROP TRIGGER changestamp ON modify_test;
DROP TRIGGER
postgres=# UPDATE modify_test SET created_by = 'notpostgres',
created_at = '2000-01-01';
UPDATE 1
postgres=# select * from modify_test;
-[RECORD 1]---+---------------------------
id | 1
data | something else
created_by | postgres
created_at | 2013-04-15 09:28:23.966179
last_changed_by | postgres
last_changed_at | 2013-04-15 09:33:25.386006

Looking at the results, you can see that the created information is still the same, but
the last changed information has been updated.

Controlling when a trigger is called
While it is relatively easy to perform trigger actions conditionally inside the
PL/pgSQL trigger function, it is often more efficient to skip invoking the trigger
altogether. The performance effects of firing a trigger is not generally noticed when
only a few events are fired. However, if you are bulk loading data or updating large
portions of your table, the cumulative effects can certainly be felt. To avoid the
overhead, its best to only call the trigger function when it is actually needed.

There are two ways to narrow down when a trigger is called in the CREATE TRIGGER
command itself.

So once more use the same syntax, but this time with all options:

CREATE TRIGGER name
 { BEFORE | AFTER | INSTEAD OF } { event [OR event ...] }
 [OF column_name [OR column_name ...]] ON table_name
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE PROCEDURE function_name (arguments)

PL/pgSQL Trigger Functions

[110]

Conditional trigger
A flexible way of controlling triggers is a generic WHEN clause that is similar to WHERE
in SQL queries. With a WHEN clause, you can write any expression, except a subquery,
that is tested before the trigger function is called. The expression must result in a
Boolean value, and if the value is FALSE (or NULL which is automatically converted to
FALSE), the trigger function is not called.

For example, you could use this to enforce a "No updates on Friday afternoon" policy.

CREATE OR REPLACE FUNCTION cancel_with_message()
 RETURNS TRIGGER AS $$
BEGIN
 RAISE EXCEPTION '%', TG_ARGV[0];
 RETURN NULL;
END;
$$ LANGUAGE plpgsql;

This function just raises an exception with the string passed as an argument in the
CREATE TRIGGER statement. Notice that we cannot use TG_ARGV[0] directly, as the
message as the PL/pgSQL syntax requires a string constant as the third element
of RAISE.

Using the previous trigger function, we can set up triggers to enforce various
constraints by specifying both the condition (in the WHEN(...) clause) and the
message to raise if this condition is met as the argument to trigger function:

CREATE TRIGGER no_updates_on_friday_afternoon
 BEFORE INSERT OR UPDATE OR DELETE OR TRUNCATE ON new_tasks
 FOR EACH STATEMENT
 WHEN (CURRENT_TIME > '12:00' AND extract(DOW from CURRENT_TIMESTAMP)
= 5)
EXECUTE PROCEDURE cancel_with_message('Sorry, we have a "No task
change on Friday afternoon" policy!');

Now if anybody tries to modify the new_tasks table on any Friday afternoon he gets
a message about this policy:

postgres=# insert into new_tasks values (...);
ERROR: Sorry, we have a "No task change on Friday afternoon" policy!

Chapter 5

[111]

One thing to note about trigger arguments is that the argument list is
always an array of text (text[]).
All of the arguments given in the CREATE TRIGGER statement are
converted to strings, and this includes any NULL values.
This means putting NULL in the argument list results in text NULL in
the corresponding slot in PG_ARGV.

Trigger on specific field changes
Another way of controlling when a trigger is fired is using a list of columns. In
UPDATE triggers, you can specify one or more comma-separated columns to tell
PostgreSQL that the trigger function should only be executed if any of the listed
columns change.

It is possible to construct the same conditional expression with a WHEN clause, but the
list of columns has cleaner syntax:

WHEN(
 NEW.column1 IS DISTINCT FROM OLD.column1
 OR
 NEW.column2 IS DISTINCT FROM OLD.column2)

A common example of how this conditional expression is used is raising an error
each time someone tries to change a primary key column. This can easily be done
by declaring an AFTER trigger using the cancel_op() trigger function (defined
previously in this chapter) as follows:

CREATE TRIGGER disallow_pk_change
 AFTER UPDATE OF id ON table_with_pk_id
 FOR EACH ROW
EXECUTE PROCEDURE cancel_op();

Visibility
Sometimes your trigger functions may run into the Multiversion Concurrency
Control (MVCC) visibility rules of how PostgreSQL's system interacts with
changes to data.

A function declared STABLE or IMMUTABLE will never see changes applied to the
underlying table by previous triggers.

PL/pgSQL Trigger Functions

[112]

A VOLATILE function follows more complex rules, which are in a nutshell as follows:

•	 The statement-level BEFORE triggers see no changes made by the current
statement, and statement-level AFTER triggers see all of the changes made
by the statement.

•	 Data changes by the operation to the row causing the trigger to fire are of
course not visible to BEFORE triggers, as the operation has not happened yet.
Changes made by other triggers to other rows in the same statement are visible
and as the order of the rows processed is undefined this needs caution!

•	 The same is true of INSTEAD OF triggers. The changes by the triggers fired
in the same command on previous rows are visible to current invocation of
trigger function. Row-level AFTER triggers are fired when all of the changes to
all rows of the outer command are complete and visible to the trigger function.

This all applies to functions querying data in the database, the OLD and NEW rows are
of course visible as described previously.

The same information in perhaps a different wording is available at
http://www.postgresql.org/docs/current/static/spi-visibility.html.

And most importantly – use triggers
cautiously!
Triggers are an appropriate tool for using in database-side actions, such as auditing,
logging, enforcing complex constraints, and even replication (there are several
logical replication systems based of triggers in production use). However, for most
application logic it is much better to avoid triggers as they can lead to really weird
and hard to debug problems.

Variables passed to the PL/pgSQL
TRIGGER function
The following is a complete list of variables available to a trigger function written in
PL/pgSQL:

OLD, NEW RECORD before and after images of the row the trigger is called
on. OLD is unassigned for INSERT and NEW is unassigned
for DELETE.
Both are UNASSIGNED in statement-level triggers.

Chapter 5

[113]

TG_NAME name The name of the trigger (this and following from the
trigger definition).

TG_WHEN text One of BEFORE, AFTER, or INSTEAD OF.
TG_LEVEL text ROW or STATEMENT.
TG_OP text One of INSERT, UPDATE, DELETE, or TRUNCATE.
TG_RELID oid OID of the table the trigger is created on.
TG_TABLE_NAME name The name of the table (old spelling TG_RELNAME is

deprecated but still available).
TG_TABLE_SCHEMA name The schema name of the table.
TG_NARGS, TG_
ARGV[]

Int,
text[]

Number of arguments and the array of the arguments
from trigger definition.

Summary
A trigger is a binding of a set of actions to certain operations performed on a table
or view. This set of actions is defined in a special trigger function distinguished by
specifying the type of returned value to be of special pseudotype trigger. So each
time an operation (INSERT, UPDATE, DELETE, or TRUNCATE) is performed on the table,
this trigger function is called by the system.

It can be executed either FOR EACH ROW or FOR EACH STATEMENT. If executed for
each row (row level trigger), the function is passed special variables OLD and NEW.
This will contain the row content, as it is currently in the database (OLD), and as
it is at the moment the trigger function is called (NEW). Where the OLD or NEW
value is missing, it is passed as undefined. If executed once per statement
(the statement-level trigger), both OLD and NEW are unassigned for all operations.

The trigger function for row-level triggers on INSERT, UPDATE, and DELETE can be
set to execute either BEFORE or AFTER the operation on a table and the INSTEAD OF
operation on view.

The trigger function for statement level triggers on INSERT, UPDATE, and DELETE can
be set to execute either BEFORE or AFTER the operation on both tables and views.

While TRUNCATE is logically a special form of "delete all" statement, no ON DELETE
triggers will fire in case of TRUNCATE. Instead, you can use a special ON TRUNCATE
trigger on the same table. Only statement-level on truncate triggers are possible.
While you can't skip statement triggers by returning a NULL, you can RAISE
EXCEPTION and abort the transaction.

It is also not possible to define any ON TRUNCATE triggers on views.

Debugging PL/pgSQL
This chapter is entirely optional. Since you have only produced the highest quality,
bug-free code using the best possible algorithms, this text is probably a waste of
your time. Of course your functions parse perfectly on the first try. Your views
show exactly what they should—according to the enviously complete business and
technical documentation that you wrote last month. There is no need for version
control on your procedures, as there has only ever been a Version 1.

Since you are still reading this, I'm sure that you're a whole lot more like me. I spend
about 10 percent of my time writing new code, and about 90 percent of it editing the
mistakes and oversights that I (and others) made in the first 10 percent. In fact, it could
be argued that no new code is ever written at all. Actually, a more accurate description
of the process is that a dumb assertion is made, and then edited until the customer can
no longer stand the Quality Assurance (QA) process. We then ship the result in the
hopes of being useful to the end user. Was that too much reality for you? Sorry.

The objective of this chapter is to make you much faster at making mistakes. As a
by-product, you will also learn how to diagnose and fix them at an alarming rate
of speed. The net effect for which we are hoping is that your boss will assume you
wrote it correctly the first time. This is, of course, a lie, but a very useful one.

This concept is critical to agile software development. In that philosophy, it is
called "prototyping". The idea is to create a feature quickly and demonstrate it as
a conversation point, rather than trying to produce an entire system (presumably
perfectly) from conceptual documentation. Other authors refer to it as "failing
quickly". It is a recognition that the first 3 or 4 development iterations will probably
not be acceptable to the customer, and shouldn't be advertised as final until some
discussion has occurred.

This process effectively requires the developer to "live" in the debugger. He
continually changes the outputs and routines until the desired effect is achieved.
PostgreSQL has a wonderful set of debugging tools available to help you fix your
mess. Let me show you how they work.

Debugging PL/pgSQL

[116]

''Manual'' debugging with RAISE NOTICE
You might want to have a look at Chapter 10, Publishing Your Code as PostgreSQL.
That chapter includes some samples (and an extremely handy way to install them)
that will be useful here in this part of the book. The examples will be shown again
here in the text of this chapter, but they would be quite a bit easier for you to install
as an extension.

Here is the first promised example:

CREATE OR REPLACE FUNCTION format_us_full_name_debug(
 prefix text,
 firstname text,
 mi text,
 lastname text,
 suffix text)
 RETURNS text AS
$BODY$
DECLARE
 fname_mi text;
 fmi_lname text;
 prefix_fmil text;
 pfmil_suffix text;
BEGIN	
 fname_mi := CONCAT_WS(' ', CASE trim(firstname) WHEN '' THEN NULL
ELSE firstname END, CASE trim(mi) WHEN '' THEN NULL ELSE mi END ||
'.');
 RAISE NOTICE 'firstname mi.: %', fname_mi;
 fmi_lname := CONCAT_WS(' ', CASE fname_mi WHEN '' THEN NULL ELSE
fname_mi END,CASE trim(lastname) WHEN '' THEN NULL ELSE lastname END);
 RAISE NOTICE 'firstname mi. lastname: %', fmi_lname;
 prefix_fmil := CONCAT_WS('. ', CASE trim(prefix) WHEN '' THEN NULL
ELSE prefix END, CASE fmi_lname WHEN '' THEN NULL ELSE fmi_lname END);
 RAISE NOTICE 'prefix. firstname mi lastname: %', prefix_fmil;
 pfmil_suffix := CONCAT_WS(', ', CASE prefix_fmil WHEN '' THEN NULL
ELSE prefix_fmil END, CASE trim(suffix) WHEN '' THEN NULL ELSE suffix
|| '.' END);
 RAISE NOTICE 'prefix. firstname mi lastname, suffix.: %', pfmil_
suffix;

 RETURN pfmil_suffix;
END;
$BODY$
 LANGUAGE plpgsql VOLATILE;

Chapter 6

[117]

In this example, we format a person's full name using the magic of NULL propagation.

NULL propagation is what happens when any or all members of an expression
are null. In the expression: myvar := null || 'something', myvar will evaluate
to null. PostgreSQL 9.1 introduces a very handy new function named CONCAT_WS
(concatenate with separator) to take advantage of this effect.

For example:

lastfirst := CONCAT_WS(', ', lastname, firstname);

The preceding code will not print the comma and whitespace between lastname and
firstname if either firstname or lastname is not present. This effect is used in the
function format_us_address() with many levels of nesting to provide an address
that is visually appealing as well as postal processing friendly.

There are several statements in the code example showing how to use RAISE NOTICE
along with some text and a variable to provide debugging information as the
function is being called. For example, running our function in pgAdmin3 will produce
some notification messages:

You can see those messages in pgAdmin3 in the Messages tab in the
following screenshot:

The output of the same query in the command-line psql client is shown in the
following code:

kroybal=# SELECT format_us_full_name_debug('Mr','Kirk','L','Roybal','
Author');
NOTICE: firstname mi.: Kirk L.
NOTICE: firstname mi. lastname: Kirk L. Roybal

Debugging PL/pgSQL

[118]

NOTICE: prefix. firstname mi lastname: Mr. Kirk L. Roybal
NOTICE: prefix. firstname mi lastname, suffix.: Mr. Kirk L. Roybal,
Author.
 format_us_full_name_debug

 Mr. Kirk L. Roybal, Author.
(1 row)

Throwing exceptions
The RAISE command takes several other operators than NOTICE. It will also throw
exceptions that are intended for the calling code to catch. The following is an
example of creating an exception:

CREATE OR REPLACE FUNCTION validate_us_zip(zipcode TEXT)
 RETURNS boolean
AS $$
DECLARE
 digits text;
BEGIN
 -- remove anything that is not a digit (POSIX compliantly, please)
 digits := (SELECT regexp_replace(zipcode,'[^[:digit:]]','','g'));

 IF digits = '' THEN
 RAISE EXCEPTION 'Zipcode does not contain any digits --> %',
digits USING HINT = 'Is this a US zip code?', ERRCODE = 'P9999';
 ELSIF length(digits) < 5 THEN
 RAISE EXCEPTION 'Zipcode does not contain enough digits --> %',
digits USING HINT = 'Zip code has less than 5 digits.', ERRCODE =
'P9998';
 ELSIF length(digits) > 9 THEN
 RAISE EXCEPTION 'Unnecessary digits in zip code --> %', digits
USING HINT = 'Zip code is more than 9 digits.', ERRCODE = 'P9997';
 ELSIF length(digits) > 5 AND length(digits) < 9 THEN
 RAISE EXCEPTION 'Zip code cannot be processed --> %', digits USING
HINT = 'Zip code abnormal length.', ERRCODE = 'P9996';
 ELSE
 RETURN true;
 END IF;
END;
$$ LANGUAGE plpgsql;

Chapter 6

[119]

The ERRCODE values are defined by the developer. In this example, I used the general
PL/pgSQL error code value (P0001 or plpgsql_error), started at the top of the
range (P9999) of errors, and decremented for each type of error that I wished to
expose. This is a very simplistic technique designed to prevent overlap in the future
from error codes used by PL/pgSQL. You are free to invent any error codes you
like, but would be well advised to avoid those already listed in the documentation at
http://www.postgresql.org/docs/current/static/errcodes-appendix.html.

A sample function (error_trap_report) has been provided in the accompanying
code that you can easily modify to determine the error code constant that is being
thrown by any given error number. For PL/pgSQL functions, the error constant is
plpgsql_error (P0001) by default.

The following is the code used to capture any errors thrown in the previous example:

CREATE OR REPLACE FUNCTION get_us_zip_validation_status(zipcode text)
returns text
AS
$$
BEGIN
 SELECT validate_us_zip(zipcode);
 RETURN 'Passed Validation';
EXCEPTION
 WHEN SQLSTATE 'P9999' THEN RETURN 'Non-US Zip Code';
 WHEN SQLSTATE 'P9998' THEN RETURN 'Not enough digits.';
 WHEN SQLSTATE 'P9997' THEN RETURN 'Too many digits.';
 WHEN SQLSTATE 'P9996' THEN RETURN 'Between 6 and 8 digits.';
 RAISE; -- Some other SQL error.	
END;
$$
LANGUAGE 'plpgsql';

This code can be called as follows:

SELECT get_us_zip_validation_status('34955');
 get_us_zip_validation_status

 Passed Validation
(1 row)

root=# SELECT get_us_zip_validation_status('349587');
 get_us_zip_validation_status

 Between 6 and 8 digits.

Debugging PL/pgSQL

[120]

(1 row)

root=# SELECT get_us_zip_validation_status('3495878977');
 get_us_zip_validation_status

 Too many digits.
(1 row)

root=# SELECT get_us_zip_validation_status('BNHCGR');
 get_us_zip_validation_status

 Non-US Zip Code
(1 row)

root=# SELECT get_us_zip_validation_status('3467');
 get_us_zip_validation_status

 Not enough digits.
(1 row)

Logging to a file
The RAISE statement expression can be sent to a logfile using log_min_messages.
This parameter is set in postgresql.conf. The valid values are: debug5, debug4,
debug3, debug2, debug1, info, notice, warning, error, log, fatal, and panic.

The default logging level is packaging system dependent. On Ubuntu, the default
logging level is info. The logging levels correspond to the same expressions for the
RAISE statement. As a developer, you can raise any of the messages that are available
and have them recorded in the file log for later analysis.

The simplest way to post a message to the PostgreSQL daemon logfile is with
RAISE LOG:

RAISE LOG 'Why am I doing this?';

This logfile is usually located with the rest of the system logfiles under /var/log.
On Ubuntu, this is /var/log/postgresql/postgresql-9.1-main.log.

Chapter 6

[121]

Advantages of RAISE NOTICE
Using the RAISE NOTICE form of debugging has several advantages. It can be
used easily and repeatedly with scripts for regression testing. This is very easily
accomplished with the command-line client. Consider the following statement:

psql -qtc "SELECT format_us_full_name_debug('Mr','Kirk','L.','Roybal'
,'Author');"

The preceding statement produces the following output to stdout:

NOTICE: firstname mi.: Kirk L..
NOTICE: firstname mi. lastname: Kirk L.. Roybal
NOTICE: prefix. firstname mi lastname: Mr. Kirk L.. Roybal
NOTICE: prefix. firstname mi lastname, suffix.: Mr. Kirk L.. Roybal,
Author.
 Mr. Kirk L.. Roybal, Author.

Because a constant set of input parameters should always produce a known output,
it is very easy to use command-line tools to test for expected outputs. When you
are ready to deploy your newly modified code to the production system, run your
command-line tests to verify that all of your functions still work as expected.

RAISE NOTICE is included with the product and requires no installation. This
advantage will become clearer later in the chapter where the rather painful
installation procedure for PL/pgSQL Debugger is explained.

The RAISE statement is easy to understand. The syntax is very straightforward and
it is well documented at http://www.postgresql.org/docs/current/static/
plpgsql-errors-and-messages.html.

RAISE works in any development environment and has been around for a very long
time in almost every version of PostgreSQL on every operating system. I have used it
with pgAdmin3, phpPgAdmin, as well as the command-line tool psql.

These attributes, taken together, make RAISE a very attractive tool for
small-scale debugging.

Debugging PL/pgSQL

[122]

Disadvantages of RAISE NOTICE
Unfortunately, there are some disadvantages to using this method of debugging. The
primary disadvantage is remembering to remove the RAISE statements when they
are no longer necessary. The messages tend to clutter up the psql command-line
client, and are generally annoying to other developers. The log may fill up quickly
with useless messages from previous debug sessions. RAISE statements need to be
written, commented out, and restored when needed. They may not cover the actual
bug being sought. They also slow down the execution of the routine.

Visual debugging
The PL/pgSQL Debugger is a project hosted on pgFoundry that provides a
debugging interface into PostgreSQL Version 8.2 or higher. The following statement
is mentioned at http://pgfoundry.org/projects/edb-debugger/:

"The PL/pgSQL debugger lets you step through PL/pgSQL code, set and clear
breakpoints, view and modify variables, and walk through the call stack. "

As you can see from the description, the PL/pgSQL Debugger can be quite a handy
little tool to have in your arsenal.

Getting the debugger installed
Ok, now we move past the glamour, and need to actually get it running on your
system. If you installed PostgreSQL with one of packages that contain the Debugger,
installation is pretty simple. Otherwise, you will need to build it from source.

Building the PL/pgSQL Debugger from source is beyond the scope of this book. The
best way to build the source would be to pull the latest version for the Concurrent
Versions System (CVS) source control system and follow the README file in the
directory. If you want to get started quickly with it, and you have a Windows machine
available, the simplest way to use the Debugger is by using the Windows installer.

Installing pgAdmin3
The PL/pgSQL Debugger module works with pgAdmin3. There are no special steps
necessary with the installation of pgAdmin3 for the debugger to function. Install it as
usual from your package manager on the platform that you are using. For Ubuntu
10.04 LTS, the following is aptitude:

sudo apt-get install pgadmin3

Chapter 6

[123]

Using the debugger
When the debugger is available for a particular database, it can be seen on the
context menu when right-clicking on a PL/pgSQL function. We have already created
some of those from the earlier part of this chapter. Using format_us_full_name as
an example, right-click with the mouse and navigate to Debugging | Debug:

You will see the following dialog:

Debugging PL/pgSQL

[124]

Enter some values into the columns, as seen in the preceding screenshot, and click on
the OK button. You will be deposited into the debugger:

This will allow you to step through the code and see the values of any variables as
they are being changed. Click on the "step-into" button a few times to watch how
the values are modified as the function is performed:

Advantages of the debugger
The PL/pgSQL Debugger does not require any resources on the server when not
actually in use. Because it is invoked manually from within pgAdmin3, it is not
resident in memory until it is actually called upon. This architecture does not require
any background processes or additional daemons for the sake of debugging.

Chapter 6

[125]

Also, the PL/pgSQL Debugger does not require any special "calling" function to be
written to invoke the debugging process. There are no errors to trap, and no tables of
error codes to interpret. Everything necessary to the debugging process is available
in a simple window.

If you connect to your database as a superuser, you also have the ability to set a global
break point. This break point can be set on any function or trigger and it will stop the
next time any code path calls the function. This is particularly useful if you want to
debug your functions or triggers in the context of your entire running application.

The greatest advantage of PL/pgSQL Debugger is that it does not require any
special rigging in the functions that are being debugged. There is no code to insert
or remove, and good coding practices do not need to be modified with respect to
debugging. There is no possibility to "forget" the debugging code when moving
to production. All of your PL/pgSQL functions are now instantly ready to debug
without any special action.

Disadvantages of the debugger
As you have become painfully aware, the installation of the debugger leaves a
lot to be desired. This debugger has not become very popular in the PostgreSQL
community at large because of the rather large learning curve involved, and that's
just to get it installed.

This form of debugging is meant for personal productivity while actively developing
functions. It does not work well as an automation tool.

Summary
These debugging methods are designed to be used in cooperation with one another.
They complement each other at different points in the development process. Where
debugging using PL/pgSQL Debugger is highly effective while editing an existing
(hopefully well written) function, other forms of debugging may be better suited to
the quality assurance or automated data processing applications.

Because PL/pgSQL Debugger is meant to be a visual tool to work within pgAdmin3,
it is possible that the developer may want to forego the visual debugger in the
interest of some other feature.

Using Unrestricted
Languages

You may have noticed that some of the PLs in PostgreSQL can be declared as
untrusted. They all end in letter u to remind you that they are untrusted each time
you use them to create a function.

This untrustedness brings up many questions:

•	 Does being untrusted mean that such languages are somehow inferior to
trusted ones?

•	 Can I still write an important function in an untrusted language?
•	 Will they silently eat my data and corrupt the database?

The answers are no, yes, and maybe respectively. Let's discuss these questions
in order.

Are untrusted languages inferior to
trusted ones?
No, on the contrary, these languages are untrusted in the same way that a sharp
knife is untrusted and should not be trusted to very small children, at least not
without adult supervision. They have extra powers that ordinary SQL or even the
trusted languages (such as PL/pgSQL) and trusted variants of the same language
(PL/Perl versus PL/Perlu) don't have.

Using Unrestricted Languages

[128]

You can use the untrusted languages to directly read and write on the server's disks,
and you can use it to open sockets and make Internet queries to the outside world.
You can even send arbitrary signals to any process running on the database host.
Generally, you can do anything the native language of the PL can do.

However, you probably should not trust arbitrary database users to have the right
to define functions in these languages. Always think twice before giving all privileges
on some untrusted language to a user or group by using the *u languages for
important functions.

Can you use the untrusted languages for important functions? Absolutely.
Sometimes, it may be the only way to accomplish some tasks from inside the server.
Performing simple queries and computations should do nothing harmful to your
database, and neither should connecting to the external world for sending e-mails,
fetching web pages, or doing SOAP requests. They may cause delays and even
queries that get stuck, but these can usually be dealt with by setting an upper limit
as to how long a query can run by using an appropriate statement time-out value.
Setting a reasonable statement time-out value by default is a good practice anyway.

So, if you don't deliberately do risky things, the probability of harming the database is
no bigger than using a "trusted" (also known as "restricted") variant of the language.
However, if you give the language to someone who starts changing bytes on the
production database "to see what happens", you probably get what you asked for.

Will untrusted languages corrupt the
database?
The power to corrupt the database is definitely there, since the functions run as the
system user of the database server with full access to the filesystem. So, if you blindly
start writing into the data files and deleting important logs, it is very likely that your
database will be corrupted.

Additional types of denial-of-service attacks are also possible such as using up all
memory or opening all IP ports; but there are ways to overload the database using
plain SQL as well, so that part is not much different from the trusted database access
with the ability to just run arbitrary queries.

So yes, you can corrupt the database, but please don't do it on a production server. If
you do, you will be sorry.

Chapter 7

[129]

Why untrusted?
PostgreSQL's ability to use an untrusted language is a powerful way to perform
some nontraditional things from database functions. Creating these functions in a PL
is an order of magnitude smaller task than writing an extension function in C. For
example, a function to look up a hostname for an IP address is only a few lines in
PL/Pythonu:

CREATE FUNCTION gethostbyname(hostname text)
 RETURNS inet
AS $$
 import socket
 return socket.gethostbyname(hostname)
$$ LANGUAGE plpythonu SECURITY DEFINER;

You can test it immediately after creating the function by using psql:

hannu=# select gethostbyname('www.postgresql.org');
 gethostbyname

 98.129.198.126
(1 row)

Creating the same function in the most untrusted language, C, involves writing tens
of lines of boilerplate code, worrying about memory leaks, and all the other problems
coming from writing code in a low-level language. While we will look at extending
PostgreSQL in C in the next chapter, I recommend prototyping in some PL language
if possible, and in an untrusted language if the function needs something that the
restricted languages do not offer.

Why PL/Python?
All of these tasks could be done equally well using PL/Perlu or PL/Tclu; I chose
PL/Pythonu mainly because Python is the language I am most comfortable with.
This also translates to having written some PL/Python code, which I plan to discuss
and share with you in this chapter.

Using Unrestricted Languages

[130]

Quick introduction to PL/Python
In the previous chapters, we discussed PL/pgSQL which is one of the standard
procedural languages distributed with PostgreSQL. PL/pgSQL is a language
unique to PostgreSQL and was designed to add blocks of computation and SQL
inside the database. While it has grown in its breath of functionality, it still lacks the
completeness of syntax of a full programming language. PL/Python allows your
database functions to be written in Python with all the depth and maturity of writing
a Python code outside the database.

A minimal PL/Python function
Let's start from the very beginning (again):

CREATE FUNCTION hello(name text)
 RETURNS text
AS $$
 return 'hello %s !' % name
$$ LANGUAGE plpythonu;

Here, we see that creating the function starts by defining it as any other PostgreSQL
function with a RETURNS definition of a text field:

CREATE FUNCTION hello(name text)
 RETURNS text

The difference from what we have seen before is that the language part is specifying
plpythonu (the language ID for PL/Pythonu language):

$$ LANGUAGE plpythonu;

Inside the function body it is very much a normal python function, returning a value
obtained by the name passed as an argument formatted into a string 'hello %s !'
using the standard Python formatting operator %:

 return 'hello %s !' % name

Finally, let's test how this works:

hannu=# select hello('world');
 hello

 hello world !
(1 row)

And yes, it returns exactly what is expected!

Chapter 7

[131]

Data type conversions
The first and last things happening when a PL function is called by PostgreSQL are
converting argument values between the PostgreSQL and PL types. The PostgreSQL
types need to be converted to the PL types on entering the function, and then the
return value needs to be converted back into the PostgreSQL type.

Except for PL/pgSQL, which uses PostgreSQL's own native types in computations,
the PLs are based on existing languages with their own understanding of what types
(integer, string, date, …) are, how they should behave, and how they are represented
internally. They are mostly similar to PostgreSQL's understanding but quite often
are not exactly the same. PL/Python converts data from PostgreSQL type to Python
types as shown in the following table:

PostgreSQL Python 2 Python 3 Comments
int2, int4 int int

int8 long int

real, double,
numeric

float float This may lose precision for numeric values.

bytea str bytes No encoding conversion is done, nor should
any encoding be assumed.

text, char(),
varchar(),
and other text
types

str str On Python 2, the string will be in server
encoding.
On Python 3, it is an unicode string.

All other types str str PostgreSQL's type output function is used to
convert to this string.

Inside the function, all computation is done using Python types and the return value
is converted back to PostgreSQL using the following rules (this is a direct quote from
official PL/Python documentation at http://www.postgresql.org/docs/current/
static/plpython-data.html):

•	 When the PostgreSQL return type is Boolean, the return value will be
evaluated for truth according to the Python rules. That is, 0 and empty string
are false, but notably f is true.

•	 When the PostgreSQL return type is bytea, the return value will be
converted to a string (Python 2) or bytes (Python 3) using the respective
Python built-ins, with the result being converted bytea.

•	 For all other PostgreSQL return types, the returned Python value is
converted to a string using Python's built-in str, and the result is passed to
the input function of the PostgreSQL data type.

Using Unrestricted Languages

[132]

Strings in Python 2 are required to be in the PostgreSQL server encoding when they
are passed to PostgreSQL. Strings that are not valid in the current server encoding
will raise an error; but not all encoding mismatches can be detected, so garbage data
can still result when this is not done correctly. Unicode strings are converted to the
correct encoding automatically, so it can be safer and more convenient to use those.
In Python 3, all strings are Unicode strings.

In other words, anything but 0, False, and an empty sequence, including empty
string ' ' or dictionary becomes PostgreSQL false.

One notable exception to this is that the check for None is done before any other
conversions and even for Booleans, None is always converted to NULL and not to the
Boolean value false.

For the bytea type, the PostgreSQL byte array, the conversion from Python's string
representation, is an exact copy with no encoding or other conversions applied.

Writing simple functions in PL/Python
Writing functions in PL/Python is not much different in principle from writing
functions in PL/pgSQL. You still have the exact same syntax around the function
body in $$, and the argument name, types, and returns all mean the same thing
regardless of the exact PL/language used.

A simple function
So a simple add_one() function in PL/Python looks like this:

CREATE FUNCTION add_one(i int)
 RETURNS int AS $$
return i + 1;
$$ LANGUAGE plpythonu;

It can't get much simpler than that, can it?

What you see here is that the PL/Python arguments are passed to the Python
code after converting them to appropriate types, and the result is passed back
and converted to the appropriate PostgreSQL type for the return value.

Chapter 7

[133]

Functions returning a record
To return a record from a Python function, you can use:

•	 A sequence or list of values in the same order as the fields in the
return record

•	 A dictionary with keys matching the fields in the return record
•	 A class or type instance with attributes matching the fields in the

return record

Here are samples of the three ways to return a record.

First, using an instance:

CREATE OR REPLACE FUNCTION userinfo(
 INOUT username name,
 OUT user_id oid,
 OUT is_superuser boolean)
AS $$
 class PGUser:
 def __init__(self,username,user_id,is_superuser):
 self.username = username
 self.user_id = user_id
 self.is_superuser = is_superuser
 u = plpy.execute("""\
 select usename,usesysid,usesuper
 from pg_user
 where usename = '%s'""" % username)[0]
 user = PGUser(u['usename'], u['usesysid'], u['usesuper'])
 return user
$$ LANGUAGE plpythonu;

Then, a little simpler one using a dictionary:

CREATE OR REPLACE FUNCTION userinfo(
 INOUT username name,
 OUT user_id oid,
 OUT is_superuser boolean)
AS $$
 u = plpy.execute("""\
 select usename,usesysid,usesuper
 from pg_user
 where usename = '%s'""" % username)[0]
 return {'username':u['usename'], 'user_id':u['usesysid'], 'is_
superuser':u['usesuper']}
$$ LANGUAGE plpythonu;

Using Unrestricted Languages

[134]

Finally, using a tuple:

CREATE OR REPLACE FUNCTION userinfo(
 INOUT username name,
 OUT user_id oid,
 OUT is_superuser boolean)
AS $$
 u = plpy.execute("""\
 select usename,usesysid,usesuper
 from pg_user
 where usename = '%s'""" % username)[0]
 return (u['usename'], u['usesysid'], u['usesuper'])
$$ LANGUAGE plpythonu;

Notice [0] at the end of u = plpy.execute(...)[0] in all the examples. It is there
to extract the first row of the result, as even for one-row results plpy.execute still
returns a list of results.

Danger of SQL injection!
As we have neither executed a prepare() method and executed a
execute() method with arguments after it, nor have we used the
plpy.quote_literal() method (both techniques are discussed later)
to safely quote the username before merging it into the query, we are
open to a security flaw known as SQL injection. So, make sure that you
only let trusted users call this function or supply the username argument.

Calling the function defined via any of these three CREATE commands will look
exactly the same:

hannu=# select * from userinfo('postgres');
 username | user_id | is_superuser
----------+---------+--------------
 postgres | 10 | t
(1 row)

It usually does not make sense to declare a class inside a function just to return a
record value. This possibility is included mostly for cases where you already have a
suitable class with a set of attributes matching the ones the function returns.

Chapter 7

[135]

Table functions
When returning a set from a PL/Python functions, you have three options:

•	 Return a list or any other sequence of return type
•	 Return an iterator or generator
•	 yield the return values from a loop

Here, we have three ways to generate all even numbers up to the argument value
using these different styles.

First, returning a list of integers:

CREATE FUNCTION even_numbers_from_list(up_to int)
 RETURNS SETOF int
AS $$
 return range(0,up_to,2)
$$ LANGUAGE plpythonu;

The list here is returned by a built-in Python function called range, which returns
a result of all even numbers below the argument. This gets returned as a table of
integers, one integer per row from the PostgreSQL function. If the RETURNS clause
of the function definition would say int[] instead of SETOF int, the same function
would return a single number of even integers as a PostgreSQL array.

The next function returns a similar result using a generator and returning both the
even number and the odd one following it. Also, notice the different PostgreSQL
syntax RETURNS TABLE(...) used this time for defining the return set:

CREATE FUNCTION even_numbers_from_generator(up_to int)
 RETURNS TABLE (even int, odd int)
AS $$
 return ((i,i+1) for i in xrange(0,up_to,2))
$$ LANGUAGE plpythonu;

The generator is constructed using a generator expression (x for x in <seq>).
Finally, the function is defined using a generator using and explicit yield syntax,
and yet another PostgreSQL syntax is used for returning SETOF RECORD with the
record structure defined this time by OUT parameters:

CREATE FUNCTION even_numbers_with_yield(up_to int,
 OUT even int,
 OUT odd int)
 RETURNS SETOF RECORD
AS $$
 for i in xrange(0,up_to,2):
 yield i, i+1
$$ LANGUAGE plpythonu;

Using Unrestricted Languages

[136]

The important part here is that you can use any of the preceding ways to define a
PL/Python set returning function, and they all work the same. Also, you are free to
return a mixture of different types for each row of the set:

CREATE FUNCTION birthdates(OUT name text, OUT birthdate date)
 RETURNS SETOF RECORD
AS $$
 return (
 {'name': 'bob', 'birthdate': '1980-10-10'},
 {'name': 'mary', 'birthdate': '1983-02-17'},
 ['jill', '2010-01-15'],
)
$$ LANGUAGE plpythonu;

This yields result as follows:

hannu=# select * from birthdates();
 name | birthdate
------+------------
 bob | 1980-10-10
 mary | 1983-02-17
 jill | 2010-01-15
(3 rows)

As you see, the data returning a part of PL/Pythonu is much more flexible than
returning data from a function written in PL/pgSQL.

Running queries in the database
If you have ever accessed a database in Python, you know that most database
adapters conform to a somewhat loose standard called Python Database API
Specification v2.0 or DBAPI 2 for short.

The first thing you need to know about database access in PL/Python is that
in-database queries do not follow this API.

Running simple queries
Instead of using the standard API, there are just three functions for doing all
database access. There are two variants: plpy.execute() for running a query,
and plpy.prepare() for turning query text into a query plan or a prepared query.

The simplest way to do a query is with:

res = plpy.execute(<query text>, [<row count>])

Chapter 7

[137]

This takes a textual query and an optional row count, and returns a result object,
which emulates a list of dictionaries, one dictionary per row.

As an example, if you want to access a field 'name' of the third row of the result,
you use:

res[2]['name']

The index is 2 and not 3 because Python lists are indexed starting from 0, so the first
row is res[0], the second row res[1], and so on.

Using prepared queries
In an ideal world this would be all that is needed, but plpy.execute(query, cnt)
has two shortcomings:

•	 It does not support parameters
•	 The plan for the query is not saved, requiring the query text to be parsed and

run through the optimizer at each invocation

We will show a way to properly construct a query string later, but for most uses
simple case parameter passing is enough. So, the execute(query, [maxrows])
call becomes a set of two statements:

plan = plpy.prepare(<query text>, <list of argument types>)
res = plpy.execute(plan, <list of values>, [<row count>])For example,
to query if a user 'postgres' is a superuser, use the following:
plan = plpy.prepare("select usesuper from pg_user where usename =
$1", ["text"])
res = plpy.execute(plan, ["postgres"])
print res[0]["usesuper"]

The first statement prepares the query, which parses the query string into a query
tree, optimizes this tree to produce the best query plan available, and returns the
prepared_query object. The second row uses the prepared plan to query for a
specific user's superuser status.

The prepared plan can be used multiple times, so that you could continue to see if
user bob is superuser.

res = plpy.execute(plan, ["bob"])
print res[0]["usesuper"]

Using Unrestricted Languages

[138]

Caching prepared queries
Preparing the query can be quite an expensive step, especially for more complex
queries where the optimizer has to choose from a rather large set of possible plans;
so, it makes sense to re-use results of this step if possible.

The current implementation of PL/Python does not automatically cache query plans
(prepared queries), but you can do it easily yourself.

try:
 plan = SD['is_super_qplan']
except:
 SD['is_super_qplan'] = plpy.prepare("....
 plan = SD['is_super_qplan']
<the rest of the function>

The values in SD[] and GD[] only live inside a single database session, so it only
makes sense to do the caching in case you have long-lived connections.

Writing trigger functions in PL/Python
As with other PLs, PL/Pythonu can be used to write trigger functions. The
declaration of a trigger function is different from an ordinary function by the return
type RETURNS TRIGGER. So, a simple trigger function that just notifies the caller that
it is indeed called looks like this:

CREATE OR REPLACE FUNCTION notify_on_call()
 RETURNS TRIGGER
AS $$
plpy.notice('I was called!')
$$ LANGUAGE plpythonu;

After creating this function, the trigger can be tested on a table using a trigger function:

hannu=# CREATE TABLE ttable(id int);
CREATE TABLE
hannu=# CREATE TRIGGER ttable_notify BEFORE INSERT ON ttable EXECUTE
PROCEDURE notify_on_call();
CREATE TRIGGER
hannu=# INSERT INTO ttable VALUES(1);
NOTICE: I was called!
CONTEXT: PL/Python function "notify_on_call"
INSERT 0 1

Chapter 7

[139]

Of course, the preceding trigger function is quite useless, as will be any trigger
without knowing when and on what data change the trigger was called. All the data
needed by a trigger when it is called is passed in via the trigger dictionary, called
TD. In TD, you have the following values:

Key Value
TD["event"] The event the trigger function is called for; one of the following

strings is contained as the event:
INSERT, UPDATE, DELETE, or TRUNCATE

TD["when"] One of BEFORE, AFTER, or INSTEAD OF.
TD["level"] ROW or STATEMENT.
TD["old"] This is the before-command image of the row. For low-level

UPDATE and DELETE triggers, this contains a dictionary for the
values of the triggering row before the changes have been made by
the command. It is None for other cases.

TD["new"] This is the after-command image of the row. For low-level INSERT
and UPDATE triggers, this contains a dictionary for the values
of the triggering row after the changes have been made by the
command. It is None for other cases.
If you are in a BEFORE or INSTEAD OF trigger, you can make
changes to this dictionary and then signal PostgreSQL to use the
changed tuple by returning the string MODIFY from the trigger
function.

TD["name"] The trigger name from the CREATE TRIGGER command.
TD["table_name"] The name of the table on which the trigger occurred.
TD["table_
schema"]

The schema of the table on which the trigger occurred.

TD["relid"] The object identifier (OID) of the table on which the trigger
occurred.

TD["args"] If the CREATE TRIGGER command included arguments, they are
available from TD["args"][0] to TD["args"][n-1].

In addition to doing anything you can do in ordinary PL/Python functions, such as
modifying data in tables, writing to files and sockets, and sending e-mails, you can
also affect the behavior of the triggering command.

If TD["when"] is ("BEFORE", "INSTEAD OF") and TD["level"] == "ROW", you
can return SKIP to abort the event. Returning None or OK indicates that the row is
unmodified and it is OK to continue. Returning None is also the default behavior
for Python if the function does a simple return or runs to the end without a return
statement; so, you don't need to do anything for this case.

Using Unrestricted Languages

[140]

In case you have modified values in the TD["new"] and you want PostgreSQL
to continue with the new values, you can return MODIFY to indicate that you've
modified the new row. This can be done if TD["event"] is INSERT or UPDATE,
otherwise the return value is ignored.

Exploring the inputs of a trigger
The following trigger function is useful when developing triggers, so that you can
easily see what the trigger function is really getting when called:

CREATE OR REPLACE FUNCTION explore_trigger()
 RETURNS TRIGGER
AS $$
import pprint
nice_data = pprint.pformat(
 (
 ('TD["table_schema"]' , TD["table_schema"]),
 ('TD["event"]' , TD["event"]),
 ('TD["when"]' , TD["when"]),
 ('TD["level"]' , TD["level"]),
 ('TD["old"]' , TD["old"]),
 ('TD["new"]' , TD["new"]),
 ('TD["name"]' , TD["name"]),
 ('TD["table_name"]' , TD["table_name"]),
 ('TD["relid"]' , TD["relid"]),
 ('TD["args"]' , TD["args"]),
)
)
plpy.notice('explore_trigger:\n' + nice_data)
$$ LANGUAGE plpythonu;

This function formats all the data passed to the trigger in TD using pprint.pformat,
and then sends it to the client as a standard Python info message using plpy.notify.
For testing this out, we create a simple table and then put an AFTER … FOR EACH
ROW … trigger using this function on that table:

CREATE TABLE test(
 id serial PRIMARY KEY,
 data text,
 ts timestamp DEFAULT clock_timestamp()
);

CREATE TRIGGER test_explore_trigger
 AFTER INSERT OR UPDATE OR DELETE ON test
 FOR EACH ROW
EXECUTE PROCEDURE explore_trigger('one', 2, null);

Chapter 7

[141]

Now, we can explore what the trigger function actually gets:

hannu=# INSERT INTO test(id,data) VALUES(1, 'firstrowdata');
NOTICE: explore_trigger:
(('TD["table_schema"]', 'public'),
 ('TD["event"]', 'INSERT'),
 ('TD["when"]', 'AFTER'),
 ('TD["level"]', 'ROW'),
 ('TD["old"]', None),
 ('TD["new"]',
 {'data': 'firstrowdata', 'id': 1, 'ts': '2013-05-13
12:04:03.676314'}),
 ('TD["name"]', 'test_explore_trigger'),
 ('TD["table_name"]', 'test'),
 ('TD["relid"]', '35163'),
 ('TD["args"]', ['one', '2', 'null']))
CONTEXT: PL/Python function "explore_trigger"
INSERT 0 1

Most of this is expected and corresponds well to the table of TD dictionary values
given in the previous table. What may be a little unexpected is the fact that the
arguments given in the CREATE TRIGGER statement are all converted to strings, even
the NULL. When developing your own triggers, either in PL/Python or any other
language, it may be useful to put this trigger on the table as well to check that the
inputs to the trigger are as expected. For example, it is easy to see that if you omit the
FOR EACH ROW part, the TD['old'] and TD['new'] will be both empty as the trigger
definition defaults to FOR EACH STATEMENT.

A log trigger
Now, we can put this knowledge to work and write a trigger that logs changes to the
table to either a file or to a special log-collector process over UDP. Logging to a file is
the simplest way to permanently log the changes in transactions which were rolled
back. If these were logged to a log table, the ROLLBACK command would also remove
the log records. This may be a crucial audit requirement for you business.

Of course, this also has the downside. You will be logging the changes that may not
be permanent due to the transaction being rolled back, but this is the price you have
to pay for not losing the log records.

CREATE OR REPLACE FUNCTION log_trigger()
RETURNS TRIGGER AS $$
 args = tuple(TD["args"])
 if not SD.has_key(args):
 protocol = args[0]

Using Unrestricted Languages

[142]

 if protocol == 'udp':
 import socket
 sock = socket.socket(socket.AF_INET,
 socket.SOCK_DGRAM)
 def logfunc(msg, addr=args[1],
 port=int(args[2]), sock=sock):
 sock.sendto(msg, (addr, port))
 elif protocol == 'file':
 f = open(args[1], 'a+')
 def logfunc(msg,f=f):
 f.write(msg+'\n')
 f.flush()
 else:
 raise ValueError, 'bad logdest in CREATE TRIGGER'
 SD[args] = logfunc
 SD['env_plan'] = plpy.prepare("""
 select clock_timestamp(),
 txid_current(),
 current_user,
 current_database()""", [])
 logfunc = SD[args]
 env_info_row = plpy.execute(SD['env_plan'])[0]
 import json
 log_msg = json.dumps(
 {'txid' : env_info_row['txid_current'],
 'time' : env_info_row['clock_timestamp'],
 'user' : env_info_row['current_user'],
 'db' : env_info_row['current_database'],
 'table' : '%s.%s' % (TD['table_name'],
 TD['table_schema']),
 'event' : TD['event'],
 'old' : TD['old'],
 'new' : TD['new'],
 }
)
 logfunc(log_msg)
$$ LANGUAGE plpythonu;

First, this trigger checks if it already has a logger function defined and cached in
the function's local dictionary SD[]. As the same trigger may be used with many
different log destinations, the log function is stored under the key constructed as a
Python tuple from the trigger function arguments in the CREATE TRIGGER statement.
We can not use the TD["args"] list directly as a key, as Python dictionary keys have
to be immutable, which a list is not, but a tuple is.

Chapter 7

[143]

If the key is not present, meaning this is the first call to this particular trigger, we
have to create an appropriate log function and store it. To do this, we examine the
first argument for the log destination type.

For the udp log type, we create a UDP socket for writing. Then, we define a function,
passing in this socket and also the other two trigger arguments as default arguments
for the function. This is the most convenient way to create a closure, and to bundle a
function with some data values in Python.

For the file type, we just open this file in the append mode (a+) and also create
a log function. The log function writes a message to this file and flushes the write,
so the data is written to the file immediately and not some time later when the
write buffer fills up. The log function created in either of these cases is stored in
SD[tuple(TD["args"])].

At this point, we also prepare and save a query plan for getting other data we want
to log and save this in SD['env_plan']. Now that we are done with the one-time
preparations, we can proceed with the actual logging part, which is really very simple.

Next, we retrieve the logging function (logfunc = SD[args]) and get the row of the
other logged data:

env_info_row = plpy.execute(SD['env_plan'])[0]

Finally, we convert all the logged data into one JSON object (log_msg =
json.dumps({...})) and then use the logging function to send it to the log,
logfunc(log_msg).

And that's it.

Next, let's test it out to see how it works by adding another trigger to our test table
we created earlier:

CREATE TRIGGER test_audit_trigger
 AFTER INSERT OR UPDATE OR DELETE ON test
 FOR EACH ROW
EXECUTE PROCEDURE log_trigger('file', '/tmp/test.json.log');

Any changes to the table done via INSERT, UPDATE, or DELETE are logged into /tmp/
test.json.log. This file is initially owned by the same user running the server,
usually postgres; so to look at it you need to either be that user or root user, or you
have to change the permissions on the file created to allow reading.

Using Unrestricted Languages

[144]

If you want to test the UDP logging part, you just have to define another trigger with
different arguments:

CREATE TRIGGER test_audit_trigger_udp
 AFTER INSERT OR UPDATE OR DELETE ON test
 FOR EACH ROW
EXECUTE PROCEDURE log_trigger('udp', 'localhost', 9999);

Of course, you need something to listen at the UDP port there. A minimalist UDP
listener is provided for testing in chapter07/logtrigger/log_udp_listener.py.
Just run it, and it prints any UDP packets received to stdout.

Constructing queries
PL/Python does a good job of managing values passed to prepared query plans, but
a standard PostgreSQL query plan can take an argument in a very limited number of
places. Sometimes, you may want to construct whole queries, not just pass values to
predefined queries. For example, you can't have an argument for a table name, or a
field name.

So, how would you proceed if you want to construct a query from the function's
arguments and be sure that everything is quoted properly and no SQL injection
would be possible? PL/Python provides three functions to help you with proper
quoting of identifiers and data just for this purpose.

The function plpy.quote_ident(name) is meant for quoting identifiers, that is,
anything that names a database object or its attribute like a table, a view, a field
name, or function name. It surrounds the name with double quotes and takes care
of properly escaping anything inside the string which would break the quoting:

hannu=# DO LANGUAGE plpythonu $$ plpy.notice(plpy.quote_ident(r'5"
\"')) $$;
NOTICE: "5"" \"""
CONTEXT: PL/Python anonymous code block
DO

And yes, 5" \" is a legal table or field name in PostgreSQL; you just have to always
quote it if you use it in any statement.

The DO syntax creates an anonymous block inside your database
session. It is a very handy way to run some procedural language
code without needing to create a function.

Chapter 7

[145]

The other two functions are for quoting literal values. The function, plpy.quote_
literal(litvalue), is for quoting strings and plpy.quote_nullable(value_
or_none) is for quoting a value, which may be None. Both of these functions quote
strings in a similar way, by enclosing them in single quotes (str becomes 'str') and
doubling any single quotes or backslashes:

hannu=# DO LANGUAGE plpythonu $$ plpy.notice(plpy.quote_literal(r" \'
"))
$$;
NOTICE: E' \\'' '
CONTEXT: PL/Python anonymous code block
DO

The only difference between these two is that plpy.quote_nullable() can also take
a value None, which will rendered as string NULL without any surrounding quotes.
The argument to both of these has to be a string or a unicode string. If you want it to
work with a value of any Python type, wrapping the value in str(value) usually
works well.

Handling exceptions
With any bit of code, you need to make sure you handle when errors occur and your
PL/Python functions are not an exception.

Before Version 9.1 of PostgreSQL, any error in an SQL query caused the surrounding
transaction to be rolled back:

hannu=# DO LANGUAGE plpythonu $$
hannu$# plpy.execute('insert into ttable values(1)')
hannu$# plpy.execute('fail!')
hannu$# $$;
ERROR: spiexceptions.SyntaxError: syntax error at or near "fail"
LINE 1: fail!
 ^
QUERY: fail!
CONTEXT: Traceback (most recent call last):
 PL/Python anonymous code block, line 3, in <module>
 plpy.execute('fail!')
PL/Python anonymous code block

Using Unrestricted Languages

[146]

You can manually use the SAVEPOINT attributes to control the boundaries of the
rolled-back block, at least as far back as Version 8.4 of PostgreSQL. This will reduce
the amount of the transaction that is rolled back:

CREATE OR REPLACE FUNCTION syntax_error_rollback_test()
 RETURNS void
AS $$
plpy.execute('insert into ttable values(1)')
try:
 plpy.execute('SAVEPOINT foo;')
 plpy.execute('insert into ttable values(2)')
 plpy.execute('fail!')
except:
 pass
plpy.execute('insert into ttable values(3)')
$$ LANGUAGE plpythonu;

hannu=# select syntax_error_rollback_test()
 syntax_error_rollback_test

(1 row)

When the SAVEPOINT foo; command is executed in PL/Python, an SQL error will
not cause full "ROLLBACK;" but an equivalent of "ROLLBACK TO SAVEPOINT foo;",
so only the effects of commands between SAVEPOINT and the error are rolled back:

hannu=# select * from ttable ;
 id

 1
 3
(2 rows)

In Version 9.1, there are two important changes in how PostgreSQL exceptions
are handled. If no SAVEPOINT or subtransaction is used, each invocation of plpy.
prepare() and plpy.execute() is run in it's own subtransaction, so that an error
will only rollback this subtransaction and not all of the current transaction. Since
using a separate subtransactions for each database interaction involves extra costs,
and you may want to control the subtransaction boundaries anyway, a new Python
context manager, plpy.subtransaction(), is provided.

Chapter 7

[147]

For an explanation of Python's context managers, refer to http://docs.python.
org/library/stdtypes.html#context-manager-types so that you can use the
with statement in Python 2.6 or newer to wrap a group of database interactions in
one subtransaction in a more Pythonic way:

hannu=# CREATE TABLE test_ex(i int);
CREATE TABLE
hannu=# DO LANGUAGE plpythonu $$
hannu$# plpy.execute('insert into test_ex values(1)')
hannu$# try:
hannu$# with plpy.subtransaction():
hannu$# plpy.execute('insert into test_ex values(2)')
hannu$# plpy.execute('fail!')
hannu$# except plpy.spiexceptions.SyntaxError:
hannu$# pass # silently ignore, avoid doing this in prod. code
hannu$# plpy.execute('insert into test_ex values(3)')
hannu$# $$;
DO
hannu=# select * from test_ex;
 i

 1
 3
(2 rows)

Atomicity in Python
While the subtransactions manage data changes in the PostgreSQL database, the
variables on Python side's of the fence live their separate lives. Python does not
provide even a single-statement level atomicity, as demonstrated by the following:

>>> a = 1
>>> a[1] = a = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'int' object does not support item assignment
>>> a
1
>>> a = a[1] = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'int' object does not support item assignment
>>> a
2

Using Unrestricted Languages

[148]

As you can see, it is possible that even a single multi-assignment statement can be
executed only halfway through. This means that you have to be be prepared to fully
manage your Python data yourself. The function, plpy.subtransaction(), won't
help you in any way with managing Python variables.

Debugging PL/Python
First, let's start by stating that there is no debugger support when running functions
in PL/Python; so it is a good idea to develop and debug a PL/Python function as
a pure Python function as much as possible and only do the final integration in
PL/Python. To help with this, you can have a similar environment in your Python
development environment using the plpy module.

Just put the module in your path and do import plpy before you try running
your prospective PL/Pythonu functions in an ordinary interpreter. If you
use any of the plpy.execute(...) or plpy.prepare() functions, you also
need to set up a database connection before using these by calling plpy.
connect(<connectstring>).

Using plpy.notice() for tracking the function's
progress
The debugging technology I use most often in any language is printing out
intermediate values as the function progresses. If the printout rolls past too
fast, you can slow it down by sleeping a second or two after each print.

In standard python, this would look like this:

def fact(x):
 f = 1
 while (x > 0):
 f = f * x
 x = x – 1
 print 'f:%d, x:%d' % (f, x)
 return f

It will print out all intermediate values for f and x as it runs:

>>> fact(3)
f:3, x:2
f:6, x:1
f:6, x:0
6

Chapter 7

[149]

If you try to use print in a PL/Python function, you will discover that nothing is
printed. In fact, there is no single logical place to print to when running a pluggable
language inside a PostgreSQL server.

The closest thing to print in PL/Python is the function plpy.notice(), which sends
a PostgreSQL NOTICE to the client and also to the server log if log_min_messages is
set to value notice or smaller.

CREATE FUNCTION fact(x int) RETURNS int
AS $$
 global x
 f = 1
 while (x > 0):
 f = f * x
 x = x - 1
 plpy.notice('f:%d, x:%d' % (f, x))
 return f
$$ LANGUAGE plpythonu;

Running this is much more verbose than the version with print, because each NOTICE
also includes information about the CONTEXT from where the NOTICE comes:

hannu=# select fact(3);
NOTICE: f:3, x:2
CONTEXT: PL/Python function "fact"
NOTICE: f:6, x:1
CONTEXT: PL/Python function "fact"
NOTICE: f:6, x:0
CONTEXT: PL/Python function "fact"
 fact

 6
(1 row)

PL/Pythonu function arguments are passed in as globals
If you compared the fact(x) function in Python and PL/Python you
noticed an extra line at the beginning of the PL/Python function:

 global x

This is needed to overcome an implementation detail that often
surprises PL/Pythonu developers; the function arguments are not the
function arguments in the Python sense and neither are they locals.
They are passed in as variables in the function's global scope.

Using Unrestricted Languages

[150]

Using assert
Similar to ordinary Python programming, you can also use Python's assert
statement to catch conditions which should not happen:

CREATE OR REPLACE FUNCTION fact(x int)
 RETURNS int
AS $$
 global x
 assert x>=0, "argument must be a positive integer"
 f = 1
 while (x > 0):
 f = f * x
 x = x - 1
 return f
$$ LANGUAGE plpythonu;

To test this, call fact() with a negative number:

hannu=# select fact(-1);
ERROR: AssertionError: argument must be a positive integer
CONTEXT: Traceback (most recent call last):
 PL/Python function "fact", line 3, in <module>
 assert x>=0, "argument must be a positive integer"
PL/Python function "fact"

You will get a message about AssertionError together with the location of the
failing line number.

Redirecting sys.stdout and sys.stderr
If all the code you need to debug is your own, the preceding two techniques will cover
most of your needs. However, what do you do in cases where you use some third
party libraries which print out debug information to sys.stdout and/or sys.stderr?

Well, in this case you can replace Python's sys.stdout and sys.stdin with your
own pseudo file object that stores everything written there for later retrieval.
Here is a pair of functions. The first of which does the capturing of sys.stdout or
uncapturing; if it is called with the argument, do_capture set to false, and the
second one returns everything captured:

CREATE OR REPLACE FUNCTION capture_stdout(do_capture bool)
 RETURNS text
AS $$
 import sys
 if do_capture:

Chapter 7

[151]

 try:
 sys.stdout = GD['stdout_to_notice']
 except KeyError:
 class WriteAsNotice:
 def __init__(self, old_stdout):
 self.old_stdout = old_stdout
 self.printed = []
 def write(self, s):
 self.printed.append(s)
 def read(self):
 text = ''.join(self.printed)
 self.printed = []
 return text
 GD['stdout_to_notice'] = WriteAsNotice(sys.stdout)
 sys.stdout = GD['stdout_to_notice']
 return "sys.stdout captured"
 else:
 sys.stdout = SD['stdout_to_notice'].old_stdout
 return "restored original sys.stdout"
$$ LANGUAGE plpythonu;

CREATE OR REPLACE FUNCTION read_stdout()
 RETURNS text
AS $$
 return GD['stdout_to_notice'].read()
$$ LANGUAGE plpythonu;

Here is a sample session using the preceding functions:

hannu=# select capture_stdout(true);
 capture_stdout

 sys.stdout captured
(1 row)

hannu=# DO LANGUAGE plpythonu $$
hannu$# print 'TESTING sys.stdout CAPTURING'
hannu$# import pprint
hannu$# pprint.pprint({'a':[1,2,3], 'b':[4,5,6]})
hannu$# $$;
DO
hannu=# select read_stdout();
 read_stdout

Using Unrestricted Languages

[152]

 TESTING sys.stdout CAPTURING +
 {'a': [1, 2, 3], 'b': [4, 5, 6]}+

(1 row)

Thinking out of the "SQL database
server" box
We'll wrap up the chapter on PL/Python with a couple of sample PL/Pythonu
functions for doing some things you would not usually consider doing inside the
database function or trigger.

Generating thumbnails when saving images
Our first example uses Python's powerful Python Imaging Library (PIL) module to
generate thumbnails of uploaded photos. For ease of interfacing with various client
libraries, this program takes the incoming image data as a base-64 encoded string:

CREATE FUNCTION save_image_with_thumbnail(image64 text)
 RETURNS int
AS $$
import Image, cStringIO
size = (64,64) # thumbnail size

convert base64 encoded text to binary image data
raw_image_data = image64.decode('base64')

create a pseudo-file to read image from
infile = cStringIO.StringIO(raw_image_data)
pil_img = Image.open(infile)
pil_img.thumbnail(size, Image.ANTIALIAS)

create a stream to write the thumbnail to
outfile = cStringIO.StringIO()
pil_img.save(outfile, 'JPEG')
raw_thumbnail = outfile.getvalue()

store result into database and return row id
q = plpy.prepare('''
 INSERT INTO photos(image, thumbnail)
 VALUES ($1,$2)

Chapter 7

[153]

 RETURNING id''', ('bytea', 'bytea'))
res = plpy.execute(q, (raw_image_data,raw_thumbnail))

return column id of first row
return res[0]['id']
$$ LANGUAGE plpythonu;

The Python code is more or less a straight rewrite from the PIL tutorial, except that
the files to read the image from and write the thumbnail image to, are replaced with
Python's standard file-like StringIO objects. For all this to work, you need to have
PIL installed on your database server host.

In Debian/Ubuntu, this can be done by running sudo apt.get install
python-imaging. On most modern Linux distributions, an alternative is to use
Python's own package distribution system by running sudo easy_install PIL.

Sending an e-mail
The next sample is a function for sending e-mails from inside a database function:

CREATE OR REPLACE FUNCTION send_email(
 sender text, -- sender e-mail
 recipients text, -- comma-separated list of recipient addresses
 subject text, -- email subject
 message text, -- text of the message
 smtp_server text -- SMTP server to use for sending
) RETURNS void
AS $$
 msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\n\r\n%s" % \
 (sender, recipients, subject, message)
 recipients_list = [r.strip() for r
 in recipients.split(',')]
 server = smtplib.SMTP(smtp_server)
 server.sendmail(sender_address, recipients_list, msg)
 server.quit()
$$ LANGUAGE plpythonu;

This function formats a message (msg = ""), converts a comma-separated To: address
into a list of e-mail addresses (recipients_list = [r.strip()...), connects to a
SMTP server, and then passes the message to the SMTP server for delivery.

To use this function in a production system, it would probably require a bit more
checking on the formats and some extra error handling in case something goes
wrong. You can read more about Python's smtplib at http://docs.python.org/
library/smtplib.html.

Using Unrestricted Languages

[154]

Summary
In this chapter, we saw that it is relatively easy to do things way beyond what
a simple SQL database server is supposed to support, thanks to its pluggable
language's support.

In fact, you can do almost anything in the PostgreSQL server you could do in any
other application server. Hopefully, this chapter just scratched the surface on some
of the ideas of what you can do inside a PostgreSQL server.

In the next chapter, we will learn about writing PostgreSQL's more advanced
functions in C. This will give you deeper access to PostgreSQL, allowing you
to use a PostgreSQL server for even more powerful things.

Writing Advanced
Functions in C

In the previous chapter, we introduced you to the possibilities of untrusted pluggable
languages being available to a PostgreSQL developer to achieve things impossible in
most other relational databases.

While using a pluggable scripting language is enough for a large class of problems,
there are two main categories, where they may fall short, performance and depth of
functionality. Most scripting languages are quite a bit slower than optimized C code
when executing the same algorithms. For a single function, this may not be the case
because common things such as dictionary lookups or string matching have been
optimized so well over the years, but in general C code will be faster than scripted
code. Also, in cases where the function is called millions of times per query, the
overhead of actually calling the function and converting the arguments and return
values to and from the scripting language counterparts can be a significant portion of
the run time.

The second potential problem with pluggable languages is that most of them just do
not support the full range of possibilities that is provided by PostgreSQL. There are
just some things that simply cannot be coded in anything else but C. For example,
when you define a completely new type for PostgreSQL, the type input and output
functions which convert the type's text representation to internal representation and
back need to handle PostgreSQL's pseudo-type cstring. This is basically the C string
or a zero-terminated string. Returning cstring is simply not supported by any of the
PL languages included in the core distribution, at least not as of PostgreSQL Version
9.2. The PL languages also do not support pseudo types ANYELEMENT, ANYARRAY, and
specially "any" VARIADIC.

In the following sections, we will go step-by-step through writing some PostgreSQL
extension functions in increasing complexity in C.

Writing Advanced Functions in C

[156]

We will start from the simplest add 2 arguments function which is quite similar
to the one in PostgreSQL manual, but we will present the material in a different
order so setting up the build environment comes early enough so that you can
follow us hands-on from the very beginning.

After that, we will describe some important things to be aware of when designing
and writing code that runs inside the server—such as memory management,
executing queries, and retrieving results.

As the topic of writing C-language PostgreSQL functions can be quite large and
our space for this topic is limited, we will occasionally skip some of the details
and refer you to the PostgreSQL manual for extra information, explanations, and
specifications. We are also limiting this section to reference PostgreSQL 9.2. While
most things will work perfectly fine across versions, there are references to paths that
will be specific to a version.

Simplest C function – return (a + b)
Let's start with a simple function, which takes two integer arguments and returns the
sum of these. We first present the source code and then will move on to show you
how to compile it, load it into PostgreSQL, and then use it as any native function.

add_func.c
A C source file implementing add(int, int) returns int function looks like the
following code snippet:

#include "postgres.h"
#include "fmgr.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(add_ab);

Datum
add_ab(PG_FUNCTION_ARGS)
{
 int32 arg_a = PG_GETARG_INT32(0);
 int32 arg_b = PG_GETARG_INT32(1);

 PG_RETURN_INT32(arg_a + arg_b);
}

Chapter 8

[157]

Let's go over the code explaining the use of each segment:

•	 #include "postgres.h": This includes most of the basic definitions and
declarations needed for writing any C code for running in PostgreSQL.

•	 #include "fmgr.h": This includes the definitions for PG_* macros used in
this code.

•	 PG_MODULE_MAGIC;: This is a "magic block" defined in fmgr.h. This block
is used by the server to ensure that it does not load code compiled by a
different version of PostgreSQL, potentially crashing the server. It was
introduced in Version 8.2 of PostgreSQL. If you really need to write code
which can also be compiled for PostgreSQL versions before 8.2 you need to
put this between #ifdef PG_MODULE_MAGIC / #endif. You see this a lot in
samples available on the Internet, but you probably will not need to do it for
any new code. The latest pre-8.2 version became officially obsolete (that is
unsupported) in November 2010, and even 8.2 community support ended in
December 2011.

•	 PG_FUNCTION_INFO_V1(add_ab);: This introduces the function to
PostgreSQL as Version 1 calling convention function. Without this line, it
will be treated as an old-style Version 0 function. (See the information box
following the Version 0 reference.)

•	 Datum: This is the return type of a C-language PostgreSQL function.
•	 add_ab(PG_FUNCTION_ARGS): The function name is add_ab and the rest are

its arguments. The PG_FUNCTION_ARGS definition can represent any number
of arguments and has to be present, even for a function taking no arguments.

•	 int32 arg_a = PG_GETARG_INT32(0);: You need to use the PG_GETARG_
INT32(<argnr>) macro (or corresponding PG_GETARG_xxx(<argnr>) for
other argument types) to get the argument value.

•	 int32 arg_b = PG_GETARG_INT32(1);: Similar to the
previous description.

•	 PG_RETURN_INT32(arg_a + arg_b);: Finally, you use the
PG_RETURN_<rettype>(<retvalue>) macro to build and return
a suitable return value.

You could also have written the whole function body as the following code:

 PG_RETURN_INT32(PG_GETARG_INT32(0) + PG_GETARG_INT32(1));

But it is much more readable as written, and most likely a good optimizing C
compiler will compile both into equivalently fast code.

Writing Advanced Functions in C

[158]

Most compilers will issue a warning message as: warning: no previous
prototype for 'add_ab' for the preceding code, so it is a good idea to also put a
prototype for the function in the file:

Datum add_ab(PG_FUNCTION_ARGS);

The usual place to put it is just before the code line PG_FUNCTION_INFO_V1(add_ab);

While the prototype is not strictly required, it enables much cleaner compiles
with no warnings.

Version 0 call conventions
There is an even simpler way to write PostgreSQL functions in C, called the
Version 0 Calling Conventions. The preceding a + b function can be written as the
following code:

int add_ab(int arg_a, int arg_b)
{
 return arg_a + arg_b;
}

Version 0 is shorter for very simple functions, but it is severely limited for most other
usages—you can't do even some basic things such as checking if a pass by value
argument is null, return a set of values, or write aggregate functions. Also, Version
0 does not automatically take care of hiding most differences of pass by value and
pass by reference types which Version 1 does. Therefore, it is better to just write all
your functions using Version 1 Calling Conventions and ignore the fact that Version
0 even exists.

From this point forward, we are only going to discuss Version 1 Calling Conventions
for a C function.

In case you are interested, there is some more information on Version 0 at
http://www.postgresql.org/docs/current/static/xfunc-c.html#AEN50495,
in the section titled 35.9.3. Version 0 Calling Conventions.

Makefile
The next step is compiling and linking the .c source file into a form that can
be loaded into PostgreSQL server. This can all be done as a series of commands
defined in a Makefile function.

Chapter 8

[159]

The PostgreSQL manual has a complete section about what flags and included paths
you should pass on each of the supported platforms and how to determine correct
paths for including files and libraries.

Fortunately, all of this is also automated nicely for developers via the PostgreSQL
Extension Building Infrastructure—or PGXS for short—which makes this really easy
for most modules.

Depending on which version of PostgreSQL you have installed,
you may need to add the development package for your
platform. These are usually the -dev or -devel packages.

Now, let's create our Makefile function. It will look like the following code:

MODULES = add_func

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

And you can compile and link the module by simply running make:

[add_func]$ make

gcc ... -c -o add_func.o add_func.c

gcc ... -o add_func.so add_func.o

rm add_func.o

Here the "..." stands for quite some amount of flags, includes, and libraries added
by PGXS.

This produces a dynamically loadable module in the current directory which can be
used directly by PostgreSQL if your server has access to this directory, which may be
the case on a development server.

 For a "standard" server, as installed by your package management system, you will
need to put the module in a standard place. This can be done using the PGXS as well.

You simply execute sudo make install and everything will be copied to the right
place; [add_func]$ sudo make install:

[sudo] password for hannu:

/bin/mkdir -p '/usr/lib/postgresql/9.2/lib'

/bin/sh /usr/lib/postgresql/9.2/lib/pgxs/src/makefiles/../../config/
install-sh -c -m 755 add_func.so '/usr/lib/postgresql/9.2/lib/'

Writing Advanced Functions in C

[160]

CREATE FUNCTION add(int, int)
You are just one step away from being able to use this function in your database. You
just need to introduce the module you just compiled to a PostgreSQL database using
the CREATE FUNCTION statement.

If you followed the samples up to this point, the following statement is all that
is needed, along with adjusting the path appropriately to where PostgreSQL is
installed on your server.

hannu=# CREATE FUNCTION add(int, int)

hannu-# RETURNS int

hannu-# AS '/usr/pgsql-9.2/lib/add_func', 'add_ab'

hannu-# LANGUAGE C STRICT;

CREATE FUNCTION

And voila—you have created your first PostgreSQL C-language extension function:

hannu=# select add(1,2);
 add

 3
(1 row)

add_func.sql.in
While what we just covered is all that is needed to have a C function in your
database, it is often more convenient to put the preceding CREATE FUNCTION
statement in an SQL file.

You usually do not know the final path of where PostgreSQL is installed when
writing the code, especially in the light of running on multiple versions of
PostgreSQL and/or on multiple operation systems. Here also PGXS can help.

You need to write a file called add_funcs.sql.in as follows:

CREATE FUNCTION add(int, int) RETURNS int
 AS 'MODULE_PATHNAME', 'add_ab'
 LANGUAGE C STRICT;

And then add the following line in your Makefile function right after
the MODULES= … line:

DATA_built = add_func.sql

Chapter 8

[161]

Now, when running make, the add_funcs.sql.in is compiled into a file
add_funcs.sql with MODULE_PATHNAME replaced by the real path where
the module will be installed.

[add_func]$ make

sed 's,MODULE_PATHNAME,$libdir/add_func,g' add_func.sql.in >add_func.sql

Also, sudo make install will copy the generated .sql file into the directory with
other .sql files for extensions.

[add_func]$ sudo make install /usr/bin/mkdir -p '/usr/pgsql-9.2/share/
contrib'

/usr/bin/mkdir -p '/usr/pgsql-9.2/lib'

/bin/sh /usr/pgsql-9.2/lib/pgxs/src/makefiles/../../config/install-sh -c
-m 644 add_func.sql '/usr/pgsql-9.2/share/contrib/'

/bin/sh /usr/pgsql-9.2/lib/pgxs/src/makefiles/../../config/install-sh -c
-m 755 add_func.so '/usr/pgsql-9.2/lib/'

After this, the introduction of your C functions to a PostgreSQL database is as simple
as hannu=# \i /usr/pgsql-9.2/share/contrib/add_func.sql.

CREATE FUNCTION

The path /usr/pgsql-9.2/share/contrib/ to add_func.sql needs to be looked
up from the output of the make install command.

There is an even cleaner way to package up your code called Extensions
where you don't need to look up for any paths and the preceding step
would just be as follows:
CREATE EXTENSION chap8_add;

But it is relatively more complex to set up, so we are not explaining it
here. We have a full chapter dedicated to Extensions later in this book.

Summary for writing a C function
Writing a C function used in PostgreSQL is a straightforward process.

1.	 Write the C code in modulename.c.
2.	 Write the SQL code for CREATE FUNCTION in modulename.sql.in.
3.	 Write a Makefile function.
4.	 Run make to compile a C file and generate modulename.sql.

Writing Advanced Functions in C

[162]

5.	 Run sudo make install to install the generated files.
6.	 Run the generated modulename.sql in your target databasehannu# \i

/<path>/modulename.sql.

Note that you must run the SQL code in any database you want to use your function.
If you want all your new databases to have access to your newly generated function,
add the function to your template database by running the modulename.sql file in
database template1 or any other database you are explicitly specifying in CREATE
DATABASE command.

Adding functionality to add(int, int)
While our function works, it adds nothing in the preceding code just using SELECT A
+ B, but functions written in C are capable of so much more. Let's start adding some
more functionality to our function.

Smart handling of NULL arguments
Notice the use of STRICT keyword in the CREATE FUNCTION add(int a, int b) in
the previously mentioned code. This means that the function will not be called if any
of the arguments are NULL, but instead NULL is returned straight away. This is similar
to how most PostgreSQL operators works, including the + sign when adding two
integers—if any of the arguments are NULL the complete result is NULL as well.

Next, we will extend our function to be smarter about NULL inputs and act like
PostgreSQL's sum() aggregate function, which ignores NULL values in inputs and still
produces sum of all non-null values.

For this, we need to do two things:

1.	 Make sure that the function is called when either of the arguments are NULL.
2.	 Handle NULL arguments by effectively converting a NULL argument to 0 and

returning NULL only in cases where both arguments are null.

The first one is easy—just leave out the STRICT keyword when declaring the
function. The latter one also seems easy as we just leave out STRICT and let the
function execute. For a function with int arguments, this almost seems to do the
trick. All NULL values show up as 0's and the only thing you miss will be returning
NULL if both arguments are NULL.

Unfortunately, this only works by coincidence. It is not guaranteed to work in future
versions, and even worse, if you do it the same way for pass by reference types it will
cause PostgreSQL to crash on null pointer references.

Chapter 8

[163]

Next we show how to do it properly. We need now to do two things: record if we
have any non-null values and add all the non-null values we see:

Datum
add_ab_null(PG_FUNCTION_ARGS)
{
 int32 not_null = 0;
 int32 sum = 0;
 if (!PG_ARGISNULL(0)) {
 sum += PG_GETARG_INT32(0);
 not_null = 1;
 }
 if (!PG_ARGISNULL(1)) {
 sum += PG_GETARG_INT32(1);
 not_null = 1;
 }
 if (not_null) {
 PG_RETURN_INT32(sum);
 }
 PG_RETURN_NULL();
}

This indeed does what we need: hannu=# CREATE FUNCTION add(int, int)
RETURNS int

 AS '$libdir/add_func', 'add_ab_null'

 LANGUAGE C;

CREATE FUNCTION

hannu=# SELECT add(NULL, NULL) as must_be_null, add(NULL, 1) as must_be_
one;

-[RECORD 1]+--

must_be_null |

must_be_one | 1

Achieving the same result using standard PostgreSQL statements, functions, and
operators would be much more verbose: hannu=# SELECT (case when (a is
null) and (b is null)

hannu(# then null

hannu(# else coalesce(a,0) + coalesce(b,0)

hannu(# end)

hannu-# FROM (select 1::int as a, null::int as b)s;

-[RECORD 1]

case | 1

Writing Advanced Functions in C

[164]

In addition to restructuring the code, we also introduced two new macros
PG_ARGISNULL(<argnr>) for checking if argument <argnr> is NULL and
PG_RETURN_NULL() for returning NULL from a function.

PG_RETURN_NULL() is different from PG_RETURN_VOID().
The latter is for using in functions which are declared to return
pseudo-type void or in other words not to return anything.

Working with any number of arguments
After the rewrite to handle NULL values it seems that with just a little more effort, we
could make it work with any number of arguments. Just move the following code
inside the for(;;) cycle over the arguments and we are done:

if (!PG_ARGISNULL(<N>)) {
 sum += PG_GETARG_INT32(<N>);
 not_null = 1;
 }

Actually, making the code use an array instead of simple type is not that simple
after all, and to make things more difficult there is no information or sample
code on how to work with arrays in official PostgreSQL manual for C-language
extension functions. The line between "supported" and "unsupported" when writing
C-language functions is quite blurred, and the programmer doing so is expected to
be able to figure some things out independently.

The bright side is that the friendly folks at the PostgreSQL mailing lists are usually
happy to help you out if they see that your question is a serious one and that you
have made some effort to figure out the basic stuff yourself.

To see how arguments of array types are handled, you have to start digging around
on the internet and/or in the backend code. One place where you can find a sample
is the contrib/hstore/ module in the PostgreSQL source code. The contrib
modules are a great reference for examples of officially supported extension modules
from PostgreSQL.

Though the code there does not do exactly what we need—it works on text[] and
not int[]—it is close enough to figure out what is needed, by supplying the basic
structure of array handling and sample usage of some utility macros and functions.

After some digging around in back-end code and doing some web searches, it is not
very hard to come up with a code for integer arrays.

Chapter 8

[165]

So here is C code for a function which sums all non-null elements in its
argument array:

#include "utils/array.h" // array utility functions and macros
#include "catalog/pg_type.h" // for INT4OID

PG_MODULE_MAGIC;

Datum add_int32_array(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(add_int32_array);

Datum
add_int32_array(PG_FUNCTION_ARGS)
{
 ArrayType *input_array;

 int32 sum = 0;
 bool not_null = false;
 // variables for "deconstructed" array
 Datum *datums;
 bool *nulls;
 int count;
 // for for loop
 int i;

 input_array = PG_GETARG_ARRAYTYPE_P(0);
 // check that we do indeed have a one-dimensional int array
 Assert(ARR_ELEMTYPE(input_array) == INT4OID);

 if (ARR_NDIM(input_array) > 1)
 ereport(ERROR,
 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
 errmsg("1-dimensional array needed")));

 deconstruct_array(input_array, // one-dimensional array
 INT4OID, // of integers
 4, // size of integer in bytes
 true, // int4 is pass-by value
 'i', // alignment type is 'i'
 &datums, &nulls, &count); // result here

 for(i=0;i<count;i++) {

Writing Advanced Functions in C

[166]

 // first check and ignore null elements
 if (nulls[i])
 continue;
 // accumulate and remember there were non-null values
 sum += DatumGetInt32(datums[i]);
 not_null = true;
 }

 if (not_null)
 PG_RETURN_INT32(sum);
 PG_RETURN_NULL();
}

So what new things are needed for handling array types as arguments? First, you
need to include definitions for array utility functions.

#include "utils/array.h"

Next, you need a pointer to your array.

ArrayType *input_array;

Notice that there is no specific array-of-integers type but just a generic ArrayType,
which is used for any array.

To initialize the array from the first argument you use an already familiar
looking macro.

input_array = PG_GETARG_ARRAYTYPE_P(0);

Except that instead of returning a INT32 value it returns an array pointer
ARRAYTYPE_P.

After getting the array pointer, we perform a couple of checks.

Assert(ARR_ELEMTYPE(input_array) == INT4OID);

We assert that the element type of returned array is indeed an integer. (There are some
inconsistencies in PostgreSQL code as the plain integer type can be called either int32
or int4 depending on where the definition comes from, but they both do mean the
same thing, just one is based on the length in bits and the other in bytes.)

The type check is an assert and not plain runtime check because after you have your
SQL definition part of the function in place PostgreSQL itself takes care not to call the
function with any other type of array.

Chapter 8

[167]

The second check is for checking that the argument is really a one-dimensional array
(PostgreSQL arrays can have 1 to n dimensions and still be of the same type).

 if (ARR_NDIM(input_array) > 1)
 ereport(ERROR,
 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
 errmsg("use only one-dimensional arrays!")));

If the input array has more than one dimension, we raise an error. (We will discuss
PostgreSQL's error reporting in C later in its own section).

If you need to work on arrays of arbitrary number of dimensions take
a look at the source code of unnest() SQL function which turns any
array into a set of array elements.
The code is located in backend/utils/adt/arrayfuncs.c file in
C function array_unnest(...).

After we have done basic sanity checking on the argument, we are ready to start
processing the array. As a PostgreSQL array can be quite a complex beast with
multiple dimensions and array element starting at arbitrary index, it is easiest to
use a ready-made utility function for most tasks. So here we use the deconstruct_
array(...) function to extract a PostgreSQL array in three separate C variables:

 Datum *datums;
 bool *nulls;
 int count;

The datums pointer will be set to point to an array filled with actual elements.
The *nulls will contain a pointer to an array of Booleans, which will be true if
the corresponding array element was NULL, and count will be set to the number
of elements found in the array.

 deconstruct_array(input_array, // one-dimensional array
 INT4OID, // of integers
 4, // size of integer in bytes
 true, // int4 is pass-by value
 'i', // alignment type is 'i'
 &datums, &nulls, &count); // result here

The other arguments are as follows:

input_array – the pointer to PostgreSQL array
INT4OID – the type of array element
element size – the true in-memory size of the element type
is element pass-by-value
element alignment id

Writing Advanced Functions in C

[168]

The type OID for int4 (=23) is already conveniently defined as INT4OID, the others
you just have to look up.

The easiest way to get the values for type, size, passbyvalue, and alignment is to
query these from the database.

c_samples=# select oid, typlen, typbyval, typalign from pg_type

c_samples-# where typname = 'int4';

-[RECORD 1]

oid | 23

typlen | 4

typbyval | t

typalign | i

After the call to deconstruct_array(...) the rest is easy—just iterate over the
value and null arrays and accumulate the sum:

for(i=0;i<count;i++) {
 // first check and ignore null elements
 if (nulls[i])
 continue;
 // accumulate and remember there were non-null values
 sum += DatumGetInt32(datums[i]);
 not_null = true;
 }

The only PostgreSQL-specific thing here is the use of the DatumGetInt32(<datum>)
macro for converting the Datum to integer. The DatumGetInt32(<datum>) macro
performs no checking of its argument to verify that it is indeed an integer (this is
C remember, so no type info is available in data itself), but using the DatumGet*()
macro helps us to make the compiler happy.

And we are done, as returning the sum (or NULL in case all elements were NULL
values) is exactly the same as in our previous function.

While this is all from the C side, we still need to teach PostgreSQL about this new
function. The simplest way is to declare a function which takes an int[] argument.

CREATE OR REPLACE FUNCTION add_arr(int[]) RETURNS int

 AS '$libdir/add_func', 'add_int32_array'

 LANGUAGE C STRICT;

Chapter 8

[169]

It works fine for any integer array you pass it for:

hannu=# select add_arr('{1,2,3,4,5,6,7,8,9}');

-[RECORD 1]

add_arr | 45

hannu=# select add_arr(ARRAY[1,2,NULL]);

-[RECORD 1]

add_arr | 3

hannu=# select add_arr(ARRAY[NULL::int]);

-[RECORD 1]

add_arr |

It even detects multidimensional arrays, and errors out if it is passed one: hannu=#
select add_arr('{{1,2,3},{4,5,6}}');

ERROR: 1-dimensional array needed

What if we want to use it the same way as our two-argument add(a,b) function?

Since Version 8.4 of PostgreSQL, it is possible using support for VARIADIC functions,
or functions taking a variable number of arguments.

Create the function as follows:

 CREATE OR REPLACE FUNCTION add(VARIADIC a int[]) RETURNS int

 AS '$libdir/add_func', 'add_int32_array'

 LANGUAGE C STRICT;

The previous calls to add_arr() can be rewritten as:

hannu=# select add(1,2,3,4,5,6,7,8,9);

-[RECORD 1]

add | 45

hannu=# select add(NULL);

-[RECORD 1]

add |

hannu=# select add(1,2,NULL);

-[RECORD 1]

add | 3

Writing Advanced Functions in C

[170]

Notice that you can't easily get the ERROR: 1-dimensional array needed as
VARIADIC always constructs a one-dimensional array from the arguments.

The only thing missing is that you can't have PostgreSQL's function overloading
mechanism to distinguish between add(a int[]) and add(VARIADIC a int[])—
you simply can't declare both of these at the same time because for PostgreSQL they
are the same function with only the initial argument detection done differently. That
is why the array version of the function was named add_arr. In case you need to
call one VARIADIC function from another, there is a way. You can call the VARIADIC
version with an argument of array type by prefixing the argument with VARIADIC on
call side: hannu=# select add(ARRAY[1,2,NULL]);.

ERROR: function add(integer[]) does not exist

LINE 1: select add(ARRAY[1,2,NULL]);

 ^

HINT: No function matches the given name and argument types. You might
need to add explicit type casts.

hannu=# select add(VARIADIC ARRAY[1,2,NULL]);

-[RECORD 1]

add | 3

You can even smuggle in a multi-dimensional array: hannu=# select
add(VARIADIC '{{1,2,3},{4,5,6}}');.

ERROR: 1-dimensional array needed

This calling convention also means that even when you create VARIADIC functions
you need to check the array dimensions.

Basic guidelines for writing C code
After having written our first function, let's look at some of the basic coding
guidelines for PostgreSQL backend coding.

Memory allocation
One of the places you have to be extra careful when writing C code in general is
memory management. For any non-trivial C program you have to carefully design
and implement your programs so that all your allocated memory is freed when
you are done with it, or else you will "leak memory" and will probably run out of
memory at some point.

Chapter 8

[171]

As this is also a common concern for PostgreSQL it has it's own solution
for it—Memory Contexts. Let's take a deeper dive into them.

Use palloc() and pfree()
Most PostgreSQL memory allocations are done using PostgreSQL's memory
allocation function palloc() and not standard C malloc(). What makes palloc()
special, is that it allocates the memory in current context and the whole memory is
freed in one go when the context is destroyed. For example, the transaction context—
which is the current context when a user-defined function is called—is destroyed and
memory allocated is freed at the end of transaction. This means that most times the
programmers do not need to worry about tracking palloc() allocated memory and
freeing it.

It is also easy to create your own memory contexts if you have some memory
allocation needs with different life spans. For example, the functions for returning
a set of rows (described in more detail later in this chapter) have a structure passed
to them, where one of the members is reserved for a pointer to a temporary context
specifically for keeping a function-level memory context.

Zero-fill the structures
Always make sure that new structures are zero-filled, either by using memset() after
allocating them or using palloc0().

PostgreSQL sometimes relies on logically equivalent data items being also the same
for bit-wise comparisons, and even when you set all the items in a structure it is
possible that some alignment issues leave garbage in the areas between structure
elements if any alignment padding was done by the compiler.

If you do not do this then PostgreSQLs hash indexes and hash joins may not work
efficiently or even give wrong results. The planner's constant comparisons may also
be wrong if constants which are logically the same are not the same via bit-wise
equality, resulting in undesirable planning results.

Include files
Most of PostgreSQL internal types are declared in postgres.h, and the function
manager interfaces (PG_MODULE_MAGIC, PG_FUNCTION_INFO_V1, PG_FUNCTION_ARGS,
PG_GETARG_<type>, PG_RETURN_<type>, and so on) are in fmgr.h. Therefore, all
your C extension modules need to include at least these two files. It is a good habit
to include postgres.h first as it gives your code the best portability by (re)defining
some platform dependent constants and macros. Including postgres.h also includes
utils/elog.h and utils/palloc.h for you.

Writing Advanced Functions in C

[172]

There are other useful include files in the utils/ subdirectory which you also may
need to include like utils/array.h used in the last example.

Another often used include directory is catalog/ which gives you the initial (and by
convention constant) part of most system tables so you do not need to look up things
like type identifier for int4 data type, but can use its pre-defined value
INT4OID directly. As of PostgreSQL 9.2, there are 79 constants for type IDs defined in
catalog/pgtype.

The values in catalog/pg_* include files are always in sync with what gets put into
the database catalogs by virtue of being the definition of the structure and contents of
the system catalog tables. The .bki files used when initdb command sets up a new
empty database cluster are generated from these .h files by genbki.pl script.

Public symbol names
It is the programmer's task to make sure that any symbol names visible in the
.so files do not conflict with those already present in the PostgreSQL backend,
including those used by other dynamically loaded libraries. You will have to rename
your functions or variables if you get messages to this effect. This may be a bigger
problem if the conflicts come from a third-party library your code is using, so test
early in the development if you can link all the planned libraries to your PostgreSQL
extension module.

Error reporting from C functions
One thing which went unexplained in the previous sample was the error
reporting part:

 if (ARR_NDIM(input_array) > 1)
 ereport(ERROR,
 (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
 errmsg("use only one-dimensional arrays!")));

All error reporting and other off-channel messaging in PostgreSQL is done using the
ereport(<errorlevel>, rest) macro. The main purpose of which is to make error
reporting look like a function call.

Chapter 8

[173]

The only parameter which is processed directly by ereport() is the first argument
error level, or perhaps more exactly severity level or log level. All the other
parameters are actually function calls which independently generate and store
additional error information in the system to be written to logs and/or be sent to
client. Being placed in the argument list of the ereport() makes sure that these
other functions are called before the actual error is reported. This is important
because in the case of an error level being ERROR, FATAL, or PANIC the system cleans
up all current transaction state and anything after the ereport() call will never get a
chance to run. Error states the end the transaction.

In case of ERROR the system is returned to a clean state and it will be ready to accept
new commands.

Error level FATAL will clean up the backend and exit the current session.

PANIC is the most destructive one and it will not only end the current connection, but
will also cause all other connections to be terminated. PANIC means that shared state
(shared memory) is potentially corrupted and it is not safe to continue. It is used
automatically for things like core dumps or other "hard" crashes.

"Error" states that are not errors
WARNING is the highest non-error level. It means that something may be wrong and
needs user/administrator attention. It is a good practice to periodically scan system
logs for warnings. Use this only for unexpected conditions. See the next one for
things happening on regular basis. Warnings go to client and server logs by default.

NOTICE is for things which are likely of higher interest to users, like information
about creating a primary key index or sequence for serial type (though these stopped
to be NOTICE in the latest version of PostgreSQL). Like the previous one, NOTICE is
sent both to client and server logs by default.

INFO is for things specifically requested by client, like VACUUM/ANALYSE VERBOSE. It
is always sent to the client regardless of client_min_messages GUC setting, but is
not written to a server log when using default settings.

LOG (and COMMERROR) are for servers operational messages, and by default are
only written to the server log. The error level LOG can also be sent to client if
client_min_messages is set appropriately, but COMMERROR never is.

There are DEBUG1 to DEBUG5 in increasing order of verbosity. They are specifically
meant for reporting debugging info and are not really useful in most other cases,
except perhaps for curiosity. Setting higher DEBUGx levels is not recommended in
production servers, as the amount logged or reported can be really huge.

Writing Advanced Functions in C

[174]

When are messages sent to the client
While most communication from server to client takes place after the command
completes (or even after the transaction is committed in case of LISTEN/NOTIFY),
everything emitted by ereport() is sent to the client immediately, thus the
mention of off-channel messaging previously. This makes ereport() a useful tool for
monitoring long-running commands such as VACUUM and also a simple debugging
aid to print out useful debug info.

You can read a much more detailed description of error reporting at http://www.
postgresql.org/docs/current/static/error-message-reporting.html.

Running queries and calling PostgreSQL
functions
Our next stop is running SQL queries inside the database. When you want to run a
query against the database, you need to use something called Server Programming
Interface (or SPI for short). SPI gives programmer the ability to run SQL queries via a
set of interface functions for using PostgreSQLs parser, planner, and executor.

If the SQL you are running via SPI fails, the control is not returned to
the caller, but instead the system reverts to a clean state via internal
mechanisms for ROLLBACK. It is possible to catch SQL errors by
establishing a sub-transaction around your calls. It is a bit involved
process not yet officially declared "stable" and thus Therefore, it not
present in the documentation on C extensions. If you need it, one
good place to look at would be source code for various pluggable
languages (pl/python, pl/proxy, …) which do it and are likely to
be maintained in good order if the interface changes.
In PL/Python source, the functions to examine are in the
plpython/plpy_spi.c file and are appropriately named
Ply_spi_subtransaction_[begin|commit|abort]().

The SPI functions do return non-negative values for success, either directly via return
value or in global variable SPI_result. Errors produce a negative value or Null.

Chapter 8

[175]

Sample C function using SPI
Here is a sample function doing an SQL query via SPI_*() functions. It is a modified
version of the sample form standard documentation (it uses Version 1 Calling
Conventions and outputs a few more bit of information). The .c, .sql.in, and
Makefile functions for this sample are available in the spi_samples/ subdirectory.

Datum
count_returned_rows(PG_FUNCTION_ARGS)
{
 char *command;
 int cnt;
 int ret;
 int proc;

 /* get arguments, convert command to C string */
 command = text_to_cstring(PG_GETARG_TEXT_P(0));
 cnt = PG_GETARG_INT32(1);

 /* open internal connection */
 SPI_connect();
 /* run the SQL command */
 ret = SPI_exec(command, cnt);
 /* save the number of rows */
 proc = SPI_processed;
 /* If some rows were fetched, print them via elog(INFO). */
 if (ret > 0 && SPI_tuptable != NULL)
 {
 TupleDesc tupdesc = SPI_tuptable->tupdesc;
 SPITupleTable *tuptable = SPI_tuptable;
 char buf[8192];
 int i, j;

 for (j = 0; j < proc; j++)
 {
 HeapTuple tuple = tuptable->vals[j];
 // construct a string representing the tuple
 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 snprintf(buf + strlen (buf),
 sizeof(buf) – strlen(buf),
 " %s(%s::%s)%s",
 SPI_fname(tupdesc, i),
 SPI_getvalue(tuple, tupdesc, i),
 SPI_gettype(tupdesc, i),

Writing Advanced Functions in C

[176]

 (i == tupdesc->natts) ? " " : " |");
 ereport(INFO, (errmsg("ROW: %s", buf)));
 }
 }

 SPI_finish();
 pfree(command);

 PG_RETURN_INT32(proc);
}

After getting the arguments using the PG_GETARG_* macro, the first new thing shown
is opening an internal connection via SPI_connect() which sets up the internal
state for the following SPI_*() function calls. The next step is to execute a full SQL
statement using SPI_exec(command, cnt).

The SPI_exec() function is a convenience variant of SPI_execute(...) with
read_only flag set to false. There is also a third version of execute at once SPI
function, the SPI_execute_with_args(...) which prepares the query, binds
the passed-in arguments, and executes in a single call.

After the query is executed, we save the SPI_processed value for returning the
number of rows processed at the end of the function. In this sample, it is not strictly
necessary, but in general you need to save any SPI_* global variable because they
could be overwritten by the next SPI_*(...) call.

To show what was returned by the query and also to show how to access fields
returned by SPI functions, we next print out detailed info any tuples returned by
the query via ereport(INFO, …) call. We first checked that the SPI_exec call was
successful (ret > 0) and that some tuples were returned (SPI_tuptable != NULL).
and then for each returned tuple for(j = 0; j < proc; ...) we looped over the
fields for(i = 1; i <= tupdesc->natts;...) formatting the fields info into a
buffer. We get the string representations of field name, value, and data type using
SPI functions SPI_fname(), SPI_getvalue(), and SPI_gettype() and then send
the row to user using ereport(INFO, …). If you want to return the values from the
function instead, see next sections on returning SETOF values and composite types.

Finally, we freed the SPI internal state using SPI_finish();. One can also free
the space allocated for the command variable by text_to_cstring(<textarg>)
function, though it is not strictly necessary thanks to the function call context being
destroyed and memory allocated in it being freed anyway at the function exit.

Chapter 8

[177]

Visibility of data changes
The visibility rules for data changes in PostgreSQL are that each command cannot
see it's own changes but usually can see changes made by commands which were
started before it, even when the command is started by the outer command or query.

The exception is when the query is executed with read-only flag set, in which case
the changes made by outer commands are invisible to inner or called commands.

The visibility rules are described in the documentation at http://www.postgresql.
org/docs/current/static/spi-visibility.html and may be quite complex to
understand at first, but it may help to think of a read-only SPI_execute() call as
being command-level, similar to transaction isolation level Serializable and read-
write call as similar to Read-Committed isolation level.

The read-write flag of SPI_execute() does not enforce
read-only transaction state!

There is more explanation at http://www.postgresql.org/docs/current/
static/spi-examples.html in the Sample session section.

More info on SPI_* functions
There is a lot more information on specific SPI_*() functions in the official
documentation.

For PostgreSQL Version 9.2 functions, http://www.postgresql.org/docs/9.2/
static/spi.html is the starting point for the SPI docs.

More sample code is also available in the PostgreSQL source in regression tests at
src/test/regress/regress.c and in the contrib/spi/ module.

Handling records as arguments or
returned values
As our next exercise, let's write a function which takes a record of three integers a, b,
and c as an argument and returns a set of different record—all permutations of a, b,
and c with an extra field x computed as a*b+c.

Writing Advanced Functions in C

[178]

First, this function is written in PL/Python to make it easier to understand what we
are trying to do: hannu=# CREATE LANGUAGE plpythonu;

CREATE LANGUAGE

hannu=# CREATE TYPE abc AS (a int, b int, c int);

CREATE TYPE

hannu=# CREATE OR REPLACE FUNCTION

hannu-# reverse_permutations(r abc)

hannu-# RETURNS TABLE(c int, b int, a int, x int)

hannu-# AS $$

hannu$# a,b,c = r['a'], r['b'], r['c']

hannu$# yield a,b,c,a*b+c

hannu$# yield a,c,b,a*c+b

hannu$# yield b,a,c,b*b+c

hannu$# yield b,c,a,b*c+a

hannu$# yield c,a,b,c*a+b

hannu$# yield c,b,a,c*b+a

hannu$# $$ LANGUAGE plpythonu;

CREATE FUNCTION

hannu=# SELECT * FROM reverse_permutations(row(2,7,13));

-[RECORD 1]

c | 2

b | 7

a | 13

x | 27

-[RECORD 2]

c | 2

b | 13

a | 7

x | 33

-[RECORD 3]

c | 7

b | 2

a | 13

x | 62

-[RECORD 4]

c | 7

Chapter 8

[179]

b | 13

a | 2

x | 93

-[RECORD 5]

c | 13

b | 2

a | 7

x | 33

-[RECORD 6]

c | 13

b | 7

a | 2

x | 93

There are three new things that we are going to touch in the following C
implementation of similar function:

1.	 How to fetch an element of a RECORD passed as an argument?
2.	 How to construct a tuple to return a RECORD type?
3.	 How to return SETOF (a.k.a TABLE) of this RECORD?

So let's dive into the C code for this right away (a sample can be found in the
chap8/c_records/ directory).

For clarity, we will explain this function in two parts, first doing a simple
reverse(a,b,c) function, which returns just a single record of (c,b,a,x=c*b+a), and
then expand it to return set of permutations such as the sample pl/pythonu function.

Returning a single tuple of a complex type
The first step in constructing a version of the reverse permutations function in C is to
start with simply being able to return a single record of type abc.

Datum
c_reverse_tuple(PG_FUNCTION_ARGS)
{
 HeapTupleHeader th;
 int32 a,b,c;
 bool aisnull, bisnull, cisnull;

 TupleDesc resultTupleDesc;

Writing Advanced Functions in C

[180]

 Oid resultTypeId;
 Datum retvals[4];
 bool retnulls[4];
 HeapTuple rettuple;

 // get the tuple header of 1st argument
 th = PG_GETARG_HEAPTUPLEHEADER(0);
 // get argument Datum's and convert them to int32
 a = DatumGetInt32(GetAttributeByName(th, "a", &aisnull));
 b = DatumGetInt32(GetAttributeByName(th, "b", &bisnull));
 c = DatumGetInt32(GetAttributeByName(th, "c", &cisnull));

 // debug: report the extracted field values
 ereport(INFO,
 (errmsg("arg: (a: %d,b: %d, c: %d)", a, b, c)));

 // set up tuple descriptor for result info
 get_call_result_type(fcinfo, &resultTypeId, &resultTupleDesc);
 // check that SQL function definition is set up to return arecord
 Assert(resultTypeId == TYPEFUNC_COMPOSITE);
 // make the tuple descriptor known to postgres as valid return
type
 BlessTupleDesc(resultTupleDesc);

 retvals[0] = Int32GetDatum(c);
 retvals[1] = Int32GetDatum(b);
 retvals[2] = Int32GetDatum(a);
 retvals[3] = Int32GetDatum(retvals[0]*retvals[1]+retvals[2]);

 retnulls[0] = aisnull;
 retnulls[1] = bisnull;
 retnulls[2] = cisnull;
 retnulls[3] = aisnull || bisnull || cisnull;

 rettuple = heap_form_tuple(resultTupleDesc, retvals, retnulls);

 PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));
}

Chapter 8

[181]

Extracting fields from an argument tuple
Getting the fields of an argument tuple is easy. First, you fetch the HeapTupleHeader
file of the argument into the th variable using the PG_GETARG_HEAPTUPLEHEADER(0)
macro, and then for each field you get the Datum (a generic type which can hold
any field value in PostgreSQL) by the field name using the GetAttributeByName()
function and then assign its value to a local variable after converting it to int32 via
DatumGetInt32().

a = DatumGetInt32(GetAttributeByName(th, "a", &aisnull));

The third argument to GetAttributeByName(...) is an address of a bool which is
set to true if the field was NULL.

There is also a companion function GetAttributeByNum() if you prefer to get the
attributes by their numbers instead of names.

Constructing a return tuple
Constructing the return tuple(s) is almost as easy.

First, you get the called functions return type descriptor using get_call_result_
type() function.

get_call_result_type(fcinfo, &resultTypeId, &resultTupleDesc);

The first argument to this function is the FunctionCallInfo structure fcinfo which
is used when calling the function you are currently writing (hidden behind the
PG_FUNCTION_ARGS macro in the C function declaration), the other two arguments
are addresses of the return type Oid and TupleDesc to receive the return tuple
descriptor in case the function returns a record type.

Next, there is a safety assert for checking that the return type is really a record (or
composite) type.

Assert(resultTypeId == TYPEFUNC_COMPOSITE);

This is to guard against errors in the CREATE FUNCTION declaration in SQL which
tells PostgreSQL about this new function.

And there is still one thing before we construct the tuple.

BlessTupleDesc(resultTupleDesc);

The purpose of BlessTupleDesc() is to fill in the missing parts of the structure,
which are not needed for internal operations on the tuple, but are essential when
the tuple is returned from the function.

Writing Advanced Functions in C

[182]

So we are done with the tuple descriptor and finally, we can construct the tuple or
record itself to be returned.

The tuple is constructed using the heap_form_tuple(resultTupleDesc,
retvals, retnulls); function which uses the TupleDesc we just prepared. It
also needs an array of Datum to be used as values in the return tuple, and an array
of bool, which is used to determine if any field should be set to NULL instead of
their corresponding Datum value. As all our fields are of type int32 their values in
retvals are set using Int32GetDatum(<localvar>). The array retnull is a simple
array of bool and needs no special tricks to set its values.

And finally we return the constructed tuple:

PG_RETURN_DATUM(HeapTupleGetDatum(rettuple));

Here, we first construct a Datum from the tuple we just constructed using
HeapTupleGetDatum() and then use the PG_RETURN_DATUM macro.

Interlude – what is Datum
In this chapter, we use something called a Datum in several places. This calls for a bit
of explanation about what a "Datum" is.

In short, a Datum is any data item the PostgreSQL processes and passes around. A
Datum itself does not contain any type information or info about if the field is actually
NULL. It is just a pointer to some memory. You always have to find out (or know
beforehand) the type of any Datum you use and also how to find out if your data
may be NULL instead of any real value.

In the preceding example, GetAttributeByName(th, "b", &bisnull) returns
a Datum, and it can return something even when the field in the tuple is NULL, so
always check for null-ness first. Also, the returned Datum itself cannot be used
for much unless we convert it to some real type, as done in the next step using
DatumGetInt32(), which simply converts the vague Datum to a real int32 value,
basically doing a cast form a memory location of an undefined type to int32.

The definition of Datum in postgresql.h is typedef Datum *DatumPtr; that is
anything pointed to by a DatumPtr. Even though DatumPtr is defined as typedef
uintptr_t Datum; it may be easier to think of it as a (slightly restricted) void *.

Once more, any real substance is added to a Datum by converting it to a real type.

You can also go the other way, turning almost anything into a Datum as seen at the
end of the function:

HeapTupleGetDatum(rettuple)

Chapter 8

[183]

Again, for anything else in PostgreSQL to make use of such Datum, the type
information must be available somewhere else, in our case the return type
definitions of the function.

Returning a set of records
Next, we modify our function to not just return a single record of re-ordered fields
from argument record, but to return all possible orderings. We still add one extra field
'x' as an example of how you can use the values you extracted from the argument.

For set-returning functions, PostgreSQL has a special calling mechanism,
where PostgreSQL's executor machinery will keep calling the function over and
over again until it reports back that it does not have any more values to return.
This return-and-continue behavior is very similar to how the yield keyword
works in Python or JavaScript. All calls to the set returning function get an
argument, a persistent structure maintained outside the function and made
available to the function via macros: SRF_FIRSTCALL_INIT() for the first
call and SRF_PERCALL_SETUP() for subsequent calls.

To make the example clearer, we provide a constant array of possible orderings to be
used when permuting the values.

Also, we read argument fields a, b, and c only once at the beginning of the function
and save the extracted values in a structure c_reverse_tuple_args, which we
allocate and initialize at the first call. For the structure to survive through all calls, we
allocate this structure in a special memory context which is maintained in the funcctx
-> multi_call_memory_ctx and store the pointer to this structure in funcctx ->
user_fctx. We also make use of funcctx fields: call_cntr and max_calls.

In the same code section run once at the first call, we also prepare the descriptor
structure needed for returning the tuples. To do so, we fetch the return tuple descriptor
by passing the address we get in funcctx->tuple_desc to function get_call_
result_type(...), and we complete the preparation by calling BlessTuple(...) on
it to fill in the missing bits needed for using it for returning values.

At the end of this section, we restore the memory context. While you usually do
not need to pfree() the things you have palloc() allocated, you should always
remember to restore the memory context when you are done using any context you
have switched to or else you risk messing up PostgreSQL in a way that can be hard
to debug later!

The rest is something that gets done at each call, including first one.

Writing Advanced Functions in C

[184]

We start by checking that there is still something to do by comparing that current call
to the max calls parameter. This is by no means the only way to determine if we have
returned all values, but it is the simplest way if you know ahead how many rows
you are going to return. If there are no more rows to return, we signal this back using
SRF_RETURN_DONE().

The rest is very similar to what the previous single-tuple function did. We compute
the retvals and retnulls arrays using the index permutations array ips and
then construct a tuple to return using heap_form_tuple(funcctx->tuple_desc,
retvals, retnulls);.

Finally, we return the tuple using macro SRF_RETURN_NEXT(...), converting the
tuple to Datum, as this is what the macro expects.

One more thing to note, all current versions of PostgreSQL will always keep calling
your function until it returns SRF_RETURN_DONE(). There is currently no way to do
an "early exit" from the callers side. This means that if your function returns 1 million
rows and you do.

select * from mymillionrowfunction() limit 3;

The function will get called 1 million times internally, and all the results will
be cached, and only after this the first 3 rows will be returned and the remaining
999,997 rows are discarded. This is not a fundamental limitation, but just an
implementation detail which is likely to change in some future version of
PostgreSQL. Don't hold your breath though, this will only happen if somebody
finds this valuable enough to implement.

The source with modifications described previously are as follows:

struct c_reverse_tuple_args {
 int32 argvals[3];
 bool argnulls[3];
 bool anyargnull;
};

Datum
c_permutations_x(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;

 const char *argnames[3] = {"a","b","c"};
 // 6 possible index permutations for 0,1,2
 const int ips[6][3] = {{0,1,2},{0,2,1},
 {1,0,2},{1,2,0},
 {2,0,1},{2,1,0}};

Chapter 8

[185]

 int i, call_nr;

 struct c_reverse_tuple_args* args;

 if(SRF_IS_FIRSTCALL())
 {
 HeapTupleHeader th = PG_GETARG_HEAPTUPLEHEADER(0);
 MemoryContext oldcontext;
 /* create a function context for cross-call persistence */
 funcctx = SRF_FIRSTCALL_INIT();
 /* switch to memory context appropriate for multiple function
calls */
 oldcontext = MemoryContextSwitchTo(
 funcctx-
>multi_call_memory_ctx

);
 /* allocate and zero-fill struct for persisting extracted
arguments*/
 args = palloc0(sizeof(struct c_reverse_tuple_args));
 args->anyargnull = false;
 funcctx->user_fctx = args;
 /* total number of tuples to be returned */
 funcctx->max_calls = 6; // there are 6 permutations of 3
elements
 // extract argument values and NULL-ness
 for(i=0;i<3;i++){
 args->argvals[i] = DatumGetInt32(GetAttributeByName(th,
argnames[i], &(args->argnulls[i])));
 if (args->argnulls[i])
 args->anyargnull = true;
 }
 // set up tuple for result info
 if (get_call_result_type(fcinfo, NULL, &funcctx->tuple_desc)
 != TYPEFUNC_COMPOSITE)
 ereport(ERROR,
 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
 errmsg("function returning record called in
context "
 "that cannot accept type record")));
 BlessTupleDesc(funcctx->tuple_desc);
 // restore memory context

Writing Advanced Functions in C

[186]

 MemoryContextSwitchTo(oldcontext);
 }

 funcctx = SRF_PERCALL_SETUP();
 args = funcctx->user_fctx;
 call_nr = funcctx->call_cntr;

 if (call_nr < funcctx->max_calls) {
 HeapTuple rettuple;
 Datum retvals[4];
 bool retnulls[4];

 for(i=0;i<3;i++){
 retvals[i] = Int32GetDatum(args->argvals[ips[call_nr]
[i]]);
 retnulls[i] = args->argnulls[ips[call_nr][i]];
 }
 retvals[3] = Int32GetDatum(args->argvals[ips[call_nr][0]]
 * args-
>argvals[ips[call_nr][1]]
 + args-
>argvals[ips[call_nr][2]]);
 retnulls[3] = args->anyargnull;

 rettuple = heap_form_tuple(funcctx->tuple_desc, retvals,
retnulls);

 SRF_RETURN_NEXT(funcctx, HeapTupleGetDatum(rettuple));
 }
 else /* do when there is no more left */
 {
 SRF_RETURN_DONE(funcctx);
 }

}

Fast capturing of database changes
Some obvious things to code in C are logging, or auditing triggers, which get called
at each INSERT, UPDATE, or DELETE to a table. We have not set aside enough space
in this book to explain everything needed for C triggers, but interested reader could
look up the source code for the skytools package where you can find more than one
way to write triggers in C.

Chapter 8

[187]

The highly optimized C source for the two main triggers, logtriga and logutriga,
includes everything you need to capture these changes to a table and even detecting
table structure changes while the code is running.

The latest source code for skytools can be found at http://pgfoundry.org/
projects/skytools.

Doing something at commit/rollback
As of this writing, there is no possibility to define a trigger function which is
executed ON COMMIT or ON ROLLBACK. However, if you really need to have
some code executed on these database events, you have a possibility to register a
C-language function to be called on these events. Unfortunately, this registration
cannot be done in a permanent way like triggers, but the registration function has to
be called each time a new connection starts using.

RegisterXactCallback(my_xact_callback, NULL);

Use grep -r RegisterXactCallback in the contrib/ directory of PostgreSQL's
source code to find files with examples of actual callback functions.

Synchronizing between backends
All the preceding functions are designed to run in a single process/backend as if the
other PostgreSQL processes did not exist.

But what if you want to log something to a single file from multiple backends?

Seems easy—just open the file and write what you want. Unfortunately, it is not that
easy if you want to do it from multiple parallel processes and you do not overwrite
or mix up the data with what other processes write.

To have more control over the writing order between backends, you need to have
some kind of inter-process synchronization, and the easiest way to do this in
PostgreSQL is to use shared memory and light-weight locks (LWLocks).

To allocate its own shared memory segment your .so file needs to be pre-loaded,
that is, it should be one of the pre-load libraries given in postgresql.conf variable
shared_preload_libraries.

In the _PG_init() function of your module, you ask for the address of a name
shared memory segment. If you are the first one asking for the segment, you are also
responsible for initializing the shared structures, including creating and storing any
LWLocks you wish to use in your module.

Writing Advanced Functions in C

[188]

Additional resources for C
In this chapter, we were able to only give you a very basic introduction to what is
possible in C. Here is some advice on how to get more information.

First, there is of course the chapter C-Language Functions in the PostgreSQL manual.
This can be found online at http://www.postgresql.org/docs/current/static/
xfunc-c.html and as with most of the online PostgreSQL manual, you usually can
get to older versions if they exist.

The next one, not surprisingly, is the PostgreSQL source code itself. However, you
will usually not get very far by just opening the files or using grep to find what you
need. If you are good with using ctags (http://en.wikipedia.org/wiki/Ctags)
or other similar tool, it is definitely recommended.

Also, if you are new to these types of large-code exploration systems, then a really
good resource for finding and examining PostgreSQL internals is maintained at
http://doxygen.postgresql.org/. This points to the latest git master so it may not
be accurate for your version of PostgreSQL, but it is usually good enough and at least
provides a nice starting point for digging around in the source code of your version.

Quite often, you will find something to base (parts of) your C source on in the
contrib/ directory in the source code. To get an idea what is there, read through
the Appendix F, Additional Supplied Modules (http://www.postgresql.org/docs/
current/static/contrib.html). It may even be that somebody has already written
what you need. There are even more modules in http://pgfoundry.org for you
to examine and choose. A word of warning though, while modules in contrib/ is
checked at least by one or two competent PostgreSQL core programmers, the things
at pgfoundry can be of wildly varying quality. The top active projects are really good
however, so the main things to look at when determining if you can use them as
learning source are how active the project is and when it was last updated.

There is also a set of GUC parameters specifically for development and debugging
which are usually left out of sample postgresql.conf file. The descriptions and
some explanation is available at http://www.postgresql.org/docs/current/
static/runtime-config-developer.html.

Chapter 8

[189]

Summary
As C is the language that PostgreSQL itself is written in, it is very hard to draw
a distinction on what is an extension function using a defined API and what is
hacking PostgreSQL itself.

Some of the topics that we did not touch at all were:

•	 Creating new installable types from scratch—see contrib/hstore/ for a full
implementation of a new type.

•	 Creating new index methods—download some older version of PosrgreSQL
to see how full text indexing support was provided as an add-on.

•	 Implementing a new PL/* language—search for pl/lolcode for a language
whose sole purpose is to demonstrate how a PotgreSQLs PL/* language
should be written (see http://pgfoundry.org/projects/pllolcode/).
You also may want to check out the source code for PL/Proxy for a clean and
well maintained PL language. (The usage of PL/Proxy is described in the
next chapter.)

Hopefully this chapter gave you enough info to at least start writing PostgreSQL
extension functions in C.

If you need more than what is available here or in the official PostgreSQL
documentation, then remember that lots of PostgreSQLs backend developer
documentation—often including answers to the questions How? and Why?
—is in the source files. And lot of that can be relevant also to C extensions.

So remember—Use The Source, Luke!

Scaling Your Database
with PL/Proxy

If you have followed the advice in the previous chapters for doing all your database
access through functions, you are in a great position to scale your database by
"horizontally" distributing the data over multiple servers. Horizontal distribution
means that you keep just a portion of a table on each "partition" database, and that you
have a method to automatically access the right database when accessing the data.

We will gently introduce the concepts leading to the PL/Proxy partitioning
language, and then delve into the syntax and proper usage of the language itself.
Let's start with writing a scalable application from scratch. First, we will write it to be
as highly performing as possible on one server. Then, we will scale it by spreading it
out on several servers. We will first get this implemented in PL/Pythonu and then as
samples done in the theme special language for this chapter—PL/Proxy.

This approach is worth taking only if you have (plans for) a really
large database. For most databases, one server plus one or perhaps
two hot standby servers should be more than enough.

Simple single-server chat
Perhaps, the simplest application needing this kind of scalability is a messaging
(or chat) application; so let's write one.

The initial single-server implementation has the following specifications:

•	 There should be users and messages.
•	 Each user has a username, password, e-mail, list of friends, and a flag

to indicate if the user wants to get messages from only their friends,
or from everybody.

Scaling Your Database with PL/Proxy

[192]

•	 For users, there are methods for:
°° Registering new users
°° Updating the list of friends
°° Logging in

•	 Each message has a sender, receiver, message body, and timestamps for
sending and reading the message.

•	 For messages, there are methods for:
°° Sending a message
°° Retrieving new messages

A minimalistic system implementing this could look like the following:

ws: / /

Queue Notify

HUB

ws: / /

Here, a web page opens a WebSocket (ws://) to a HUB (a message concentrator)
which in turn talks to a database. On each new connection, the HUB logs in and on
successful login opens a WebSocket connection to the web page. It then sends all
new messages that have accumulated for the logged-in user since the last time they
retrieved their messages. After that, the HUB waits for new messages and pushes
them to the web page as they arrive.

Chapter 9

[193]

The database part has two tables, the user_info table:

CREATE TABLE user_info (
 username text primary key,
 pwdhash text not null, -- base64 encoded md5 hash of password
 email text,
 friend_list text[], -- list of buddies usernames
 friends_only boolean not null default false
);

As well as the message table:

CREATE TABLE message (
 from_user text not null references user_info(username),
 sent_at timestamp not null default current_timestamp,
 to_user text not null references user_info(username),
 read_at timestamp, -- when was this retrieved by to_user
 msg_body text not null,
 delivery_status text not null default 'outgoing' -- ('sent',
"failed")
);

As this is still an "all-in-one database" implementation, the database functions
corresponding to application methods are very simple.

Creating a user:

CREATE or REPLACE FUNCTION new_user(
 IN i_username text, IN i_pwdhash text, IN i_email text,
 OUT status int, OUT message text)
AS $$
BEGIN
 INSERT INTO user_info(username, pwdhash, email)
 VALUES (i_username, i_pwdhash, i_email);
 status = 200;
 message = 'OK';
EXCEPTION WHEN unique_violation THEN
 status = 500;
 message = 'USER EXISTS';
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

This method just fails when the user is already defined. A more "real-life" function
would propose a list of available usernames in this case.

Scaling Your Database with PL/Proxy

[194]

The method for login returns status 500 for failure and 200 or 201 for success. 201
means that there are unread messages for this user:

CREATE OR REPLACE FUNCTION login(
 IN i_username text, IN i_pwdhash text,
 OUT status int, OUT message text)
AS $$
BEGIN
 PERFORM 1 FROM user_info
 WHERE (username, pwdhash) = (i_username, i_pwdhash);
 IF NOT FOUND THEN
 status = 500;
 message = 'NOT FOUND';
 END IF;
 PERFORM 1 FROM message
 WHERE to_user = i_username
 AND read_at IS NULL;
 IF FOUND THEN
 status = 201;
 message = 'OK. NEW MESSAGES';
 ELSE
 status = 200;
 message = 'OK. NO MESSAGES';
 END IF;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

The other two user methods are for changing the friends list and telling the system
whether they want to receive mails that are only from friends. Error checking is
omitted here for brevity:

CREATE or REPLACE FUNCTION set_friends_list(
 IN i_username text, IN i_friends_list text[],
 OUT status int, OUT message text)
AS $$
BEGIN
 UPDATE user_info
 SET friend_list = i_friends_list
 WHERE username = i_username;
 status = 200;
 message = 'OK';
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

CREATE or REPLACE FUNCTION msg_from_friends_only(

Chapter 9

[195]

IN i_username text, IN i_friends_only boolean,
 OUT status int, OUT message text)
AS $$
BEGIN
 UPDATE user_info SET friends_only = i_friends_only
 WHERE username = i_username;
 status = 200;
 message = 'OK';
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

The function used for messaging simply send messages is as follows:

CREATE or REPLACE FUNCTION send_message(
 IN i_from_user text, IN i_to_user text, IN i_message text,
 OUT status int, OUT message text)
AS $$
BEGIN
 PERFORM 1 FROM user_info
 WHERE username = i_to_user
 AND (NOT friends_only OR friend_list @> ARRAY[i_from_user]);
 IF NOT FOUND THEN
 status = 400;
 message = 'SENDING FAILED';
 RETURN;
 END IF;
 INSERT INTO message(from_user, to_user, msg_body, delivery_status)
 VALUES (i_from_user, i_to_user, i_message, 'sent');
 status = 200;
 message = 'OK';
EXCEPTION
 WHEN foreign_key_violation THEN
 status = 500;
 message = 'FAILED';
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

The function used for messaging simply get messages is as follows:

CREATE or REPLACE FUNCTION get_new_messages(
 IN i_username text,
 OUT o_status int, OUT o_message_text text,
 OUT o_from_user text, OUT o_sent_at timestamp)
RETURNS SETOF RECORD
AS $$

Scaling Your Database with PL/Proxy

[196]

BEGIN
 FOR o_status, o_message_text, o_from_user, o_sent_at IN
 UPDATE message
 SET read_at = CURRENT_TIMESTAMP,
 delivery_status = 'read'
 WHERE to_user = i_username AND read_at IS NULL
 RETURNING 200, msg_body, from_user , sent_at
 LOOP
 RETURN NEXT;
 END LOOP;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

We are almost done with the database part of our simple server. To finish it up, we
need to do some initial performance tuning, and for that we need some data in our
tables. The easiest way is to use the generate_series() function to generate a list of
numbers, which we will use as usernames. For our initial testing, names like 7 or 42
are as good as Bob, Mary, or Jill:

hannu=# SELECT new_user(generate_series::text, 'pwd', generate_
series::text || '@pg.org')
hannu-# FROM generate_series(1,100000);

hannu=# WITH ns(n,len) AS (
hannu(# SELECT *,(random() * 10)::int FROM generate_
series(1,100000))
hannu-# SELECT set_friends_list(ns.n::text,
hannu(# ARRAY((SELECT (random() * 100000)::int
hannu(# FROM generate_series(1,len))
)::text[]
hannu(#)
hannu-# FROM ns ;

Now we have 100,000 users with 0 to 10 friends each, for a
total of 501,900 friends. hannu=# SELECT count(*) FROM (SELECT
username,unnest(friend_list) FROM user_info) a;
-[RECORD 1]-
count | 501900

Now, let's send each of the friends a message:

hannu=# SELECT send_message(username,unnest(friend_list),'hello
friend!') FROM user_info;

Chapter 9

[197]

Look how fast we can retrieve the messages:

hannu=# select get_new_messages('50000');
 get_new_messages
--
 (200,"hello friend!",49992,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",49994,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",49995,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",49996,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",49997,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",49999,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",50000,"2012-01-09 02:23:28.470979")
(7 rows)

Time: 763.513 ms

Spending almost a second getting seven messages seems slow, so we need to
optimize a bit.

The first thing to do is to add indexes for retrieving the messages:

hannu=# CREATE INDEX message_from_user_ndx ON message(from_user);
CREATE INDEX
Time: 4341.890 ms
hannu=# CREATE INDEX message_to_user_ndx ON message(to_user);
CREATE INDEX
Time: 4340.841 ms

And check if this helped to solve our problem:

hannu=# select get_new_messages('52000');
 get_new_messages
--
 (200,"hello friend!",51993,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",51994,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",51996,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",51997,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",51998,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",51999,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",52000,"2012-01-09 02:23:28.470979")
(7 rows)
Time: 2.949 ms

Much better—indexed lookups are 300 times faster than sequential scans, and this
difference will grow as tables get bigger!

Scaling Your Database with PL/Proxy

[198]

As we are updating the messages and setting their status to read, it is also a good
idea to set the fillfactor to something less than 100 percent.

Fillfactor tells PostgreSQL not to fill up database pages completely
but to leave some space for HOT updates. When PostgreSQL updates
a row, it only marks the old row for deletion and adds a new row
to the data file. If the row that is updated only changes unindexed
fields and there is enough room in the page to store a second copy, a
HOT update will be done instead. In this case, the copy can be found
using original index pointers to the first copy, and no expensive index
updates are done while updating.

hannu=# ALTER TABLE message SET (fillfactor = 90);
ALTER TABLE
Time: 75.729 ms
hannu=# CLUSTER message_from_user_ndx ON message;
CLUSTER
Time: 9797.639 ms

hannu=# select get_new_messages('55022');
 get_new_messages
--
 (200,"hello friend!",55014,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55016,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55017,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55019,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55020,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55021,"2012-01-09 02:23:28.470979")
 (200,"hello friend!",55022,"2012-01-09 02:23:28.470979")
(7 rows)

Time: 1.895 ms

Still better. The fillfactor made the get_new_messages() function another 20 to 30
percent faster, thanks to enabling the faster HOT updates!

Chapter 9

[199]

Dealing with success – splitting tables
over multiple databases
Now, let's roll forward in time a little and assume you have been successful enough
to attract tens of thousands of users and your single database starts creaking under
the load.

My general rule of thumb is to start planning for a bigger machine or splitting the
database when you are over 80 percent utilization at least for a few hours a day. It's
good to have a plan earlier, but now you have to start doing something about really
carrying out the plan.

What expansion plans work and when
There are a couple of popular ways to grow database-backed systems. Depending on
your use case, not all ways will work.

Moving to a bigger server
If you suspect that you are near your top load for the service or product, you can
simply move to a more powerful server. This may not be the best long-time scaling
solution if you are still in the middle, or even in the beginning of your growth.
You will run out of "bigger" machines to buy long before you are done. Servers
also become disproportionately more expensive as the size increases, and you will
be left with at least one "different" and thus not easily replaceable server once you
implement a proper scaling solution.

On the other hand, this will work for some time and is often the easiest way to get
some headroom while implementing real scaling solutions.

Master-slave replication – moving reads to slave
Master-slave replication, either trigger-based or WAL-based, works reasonably well in
cases where the large majority of the database accesses are reads. Some things that fall
under this case are website content managers, blogs, and other publishing systems.

As our chat system has more or less a 1:1 ratio of writes and reads, moving reads to a
separate server will buy us nothing. The replication itself is more expensive than the
possible win from reading from a second server.

Scaling Your Database with PL/Proxy

[200]

Multimaster replication
Multi-master replication is even worse than master-slave(s) when the problem
is scaling a write-heavy workload. It has all the problems of master-slave, plus it
introduces extra load via cross-partition locking or conflict resolution requirements,
which further slows down the whole cluster.

Data partitioning across multiple servers
The obvious solution to scaling writes is to split them between several servers.
Ideally you could have, for example, four servers and each of them getting exactly
¼th of the load.

In this case, each server would hold a quarter of users and messages, and serve a
quarter of all requests.

HUB HUB

Proxy 2Proxy 1

users

P0 P1 P2 P3

Chapter 9

[201]

To make the change transparent for database clients, we introduce a layer of proxy
databases. These proxy databases can either reside on the same hosts as the partition
databases or be on their own host. The role of the proxy databases is to pretend to be
the database for clients, but in fact delegate the real work to partitions by calling the
right function in the right partition database.

This client transparency is not terribly important if you have just one application
accessing the database. If you did, you could then do the splitting in the client
application. It becomes very handy as your system grows to have several applications,
perhaps using many different platforms and frameworks on the client side.

Having a separate layer of proxy databases enables easy management of data
splitting so that the client applications don't need to know anything about the
underlying data architecture. They just call the functions they need and that's all
they need to know. In fact, you can switch out the whole database structure without
the clients ever noticing anything except the better performance from the new
architecture.

More on how exactly the proxy works later. For now, let us tackle splitting the data.

Splitting the data
If we split the data, we need a simple and efficient way to determine which server
stores each data row. If the data had an integer primary key, you could just go
round-robin, store the first row on the first server, the second row on the second, and
so on. This would give you a fairly even distribution, even when rows with certain
IDs are missing.

The partitioning function for selecting between four servers would be simply:

partition_nr = id & 3

The partitioning mask 3 (binary 11) is for the first two bits. For eight partitions, you
would use 7 (binary 111), and for 64 servers it would be 63 (00111111). It is not as
easy with things like usernames, where putting all names starting with an A first, B
second, and so on does not produce an even distribution.

Turning the username into a fairly evenly distributed integer via the hash function
solves this problem and can be used directly to select the partition.

partition_nr = hashtext(username) & 3

Scaling Your Database with PL/Proxy

[202]

This would distribute the users in the following manner:

hannu=# SELECT username, hashtext(username) & 3 as partition_nr FROM
user_info;
-[RECORD 1]+--------
username | bob
partition_nr | 1
-[RECORD 2]+--------
username | jane
partition_nr | 2
-[RECORD 3]+--------
username | tom
partition_nr | 1
-[RECORD 4]+--------
username | mary
partition_nr | 3
-[RECORD 5]+--------
username | jill
partition_nr | 2
-[RECORD 6]+--------
username | abigail
partition_nr | 3
-[RECORD 7]+--------
username | ted
partition_nr | 3
-[RECORD 8]+--------
username | alfonso
partition_nr | 0

So partition 0 gets user alfonso, partition 1 bob and tom, partition 2 jane and jill,
and partition 3 gets mary, abigail, and ted. The distribution is not exactly ¼th to
each partition; but as the number of partitions increase, it will be pretty close where
this actually matters.

If we had no PL/Proxy language, we could write the partitioning functions in the
most untrusted PL languages. For example, a simple login proxy function written in
PL/Pythonu looks like this:

CREATE OR REPLACE FUNCTION login(
 IN i_username text, IN i_pwdhash text,
 OUT status int, OUT message text)
AS $$
 import psycopg2
 partitions = [
 'dbname=chap9p0 port=5433',

Chapter 9

[203]

 'dbname=chap9p1 port=5433',
 'dbname=chap9p2 port=5433',
 'dbname=chap9p3 port=5433',
]
 partition_nr = hash(i_username) & 3
 con = psycopg2.connect(partitions[partition_nr])
 cur = con.cursor()
 cur.execute('select * from login(%s,%s)', (i_username, i_
pwdhash))
 status, message = cur.fetchone()
 return (status, message)
$$ LANGUAGE plpythonu SECURITY DEFINER;

Here, we defined a set of four partition databases, given by their connect strings
stored as a list in variable partitions.

When executing the function, we first evaluate the hash function on the username
argument (hash(i_username)) and extract two bits from it (& 3) to get index into
the partitions list (the partition number) for executing each call.

Then, we open a connection to a partition database using the connect string selected
by the partition number (con=psycopg2.connect(partitions[partition_nr])).

Finally, we execute a remote query in the partition database and return the results of
this to the caller of this proxy function.

This works reasonably well if implemented like this, but also has at least two places
where it is suboptimal:

•	 First, it opens a new database connection each time the function is called,
which kills performance

•	 Second, it is a maintenance nightmare if you hard-wire the partition
information in full in all functions

The performance problem can be solved by caching the open connections, and
the maintenance problem can be solved by having a single function returning the
partition information. However, even when we do these changes and stay with
PL/Pythonu for partitioning, we will still be doing a lot of copy and paste
programming in each of our proxy functions.

Once we had reached the preceding conclusions when growing our database systems
at Skype, the next logical step was quite obvious. We needed a special partitioning
language, which would do just this one thing—calling remote SQL functions,
and then make it as fast as possible; and thus the PL/Proxy database partitioning
language was born.

Scaling Your Database with PL/Proxy

[204]

PL/Proxy – the partitioning language
The rest of this chapter is devoted to the PL/Proxy language. First, we will install
it. Then, we will look at its syntax and ways to configure the partitions for its use.
Finally, we will discuss how to do the actual data migration from a single database
to a partitioned one and then look at several usage examples.

Installing PL/Proxy
If you are on Debian, Ubuntu, or a Red Hat variant, installing the language is easy.

1.	 First, you have to install the required packages on your operating system:
sudo apt-get install postgresql-9.2-plproxy

Or:

sudo yum install plproxy92

2.	 Then, install the language in the database as an extension, which will be
hosting the PL/Proxy functions:
-bash-4.2$ psql -c "CREATE EXTENSION plproxy" proxy1
CREATE EXTENSION

At the time of writing this book, the PL/Proxy language is still not
completely integrated with the PostgreSQL standard distribution. The
SQL commands CREATE LANGUAGE plproxy and its command-line
equivalent createlang plproxy do not work. This may have been
fixed by the time you read this, so you can try these first.

PL/Proxy language syntax
The PL/Proxy language itself is very simple. The purpose of a PL/Proxy function is
to hand off the processing to another server so that it only needs six statements:

•	 CONNECT or CLUSTER and RUN ON for selecting the target database partition
•	 SELECT and TARGET for specifying the query to run
•	 SPLIT for splitting an ARRAY argument between several sub-arrays for

running on multiple partitions

Chapter 9

[205]

CONNECT, CLUSTER, and RUN ON
The first group of statements handle the remote connectivity to the partitions. The
help determines which database to run the query on. You specify the exact partition
to run the query using CONNECT:

CONNECT 'connect string' ;

Here, connect string determines the database to run. connect string is the
standard PostgreSQL connect string you would use to connect to the database
from a client application, for example: dbname=p0 port=5433.

Or, you can specify a name using CLUSTER:

CLUSTER 'usercluster'; -

Or finally, you can specify a partition number using RUN ON:

RUN ON part_func(arg[, ...]) ;

part_func() can be any existing or user-defined PostgreSQL function returning
an integer. PL/Proxy calls that function with the given arguments and then uses N
lower bits from the result to select a connection to a cluster partition.

There are two more versions of the RUN ON statement:

RUN ON ANY;

This means that the function can be executed on any partition in a cluster. This can
be used when all the required data for a function is present on all partitions.

The other version is:

RUN ON ALL;

This runs the statement on all partitions in parallel and then returns a concatenation
of results from the partitions. This has at least three main uses:

•	 For cases when you don't know where the required data row is, like when
getting data using non-partition keys. For example, getting a user by its
e-mail when the table is partitioned by username.

•	 Running aggregate functions over larger subsets of data, say counting all
users. For example, getting all the users who have a certain user in their
friend's lists.

•	 Manipulating data that needs to be the same on all partitions. For example,
when you have a price list that other functions are using, then one simple
way to manage this price list is using a RUN ON ALL function.

Scaling Your Database with PL/Proxy

[206]

SELECT and TARGET
The default behavior of a PL/Proxy function if no SELECT or TARGET is present is to
call the function with the exact same signature as itself in the remote partition.

Suppose we have the function:

CREATE OR REPLACE FUNCTION login(
 IN i_username text, IN i_pwdhash text,
 OUT status int, OUT message text)
AS $$
 CONNECT 'dbname=chap9 host=10.10.10.1';
$$ LANGUAGE plproxy SECURITY DEFINER;

If it is defined in schema public, the following call select * from login('bob',
'secret') connects to the database chap9 on host 10.10.10.1 and runs the following
SQL statement there:

SELECT * FROM public.login('bob', 'secret')

This retrieves the result and returns it to its caller.

If you don't want to define a function inside the remote database, you can substitute
the default select * from <thisfunction>(<arg1>, ...) call with your own by
writing it in the function body of PL/Proxy function:

CREATE OR REPLACE FUNCTION get_user_email(i_username text)
RETURNS SETOF text AS $$
 CONNECT 'dbname=chap9 host=10.10.10.1';
 SELECT email FROM user_info where username = i_username;
$$ LANGUAGE plproxy SECURITY DEFINER;

Only a single SELECT is supported; for any other or more complex SQL statements,
you have to write a remote function and call it.

The third option is to still call a function similar to itself, but named differently. For
example, if you have a proxy function defined not in a separate proxy database, but
in a partition, you may want it to target the local database for some data:

CREATE OR REPLACE FUNCTION public.get_user_email(i_username text)
RETURNS SETOF text AS $$
 CLUSTER 'messaging';
 RUN ON hashtext(i_username);
 TARGET local.get_user_email;
$$ LANGUAGE plproxy SECURITY DEFINER;

Chapter 9

[207]

In this setup, the local version of get_user_email() is in schema local on all
partitions. Therefore, if one of the partitions connects back to the same database
that it is defined in, it avoids circular calling.

SPLIT – distributing array elements over several
partitions
The last PL/Proxy statement is for cases where you want some bigger chunk of work
to be done in appropriate partitions. For example, if you have a function to create
several users in one call and you still want to be able to use it after partitioning, the
SPLIT statement is a way to tell PL/Proxy to split the arrays between the partitions
based on the partitioning function:

CREATE or REPLACE FUNCTION create_new_users(
 IN i_username text[], IN i_pwdhash text[], IN i_email text[],
 OUT status int, OUT message text) RETURNS SETOF RECORD
AS $$
BEGIN
 FOR i IN 1..array_length(i_username,1) LOOP
 SELECT *
 INTO status, message
 FROM new_user(i_username[i], i_pwdhash[i], i_email[i]);
 RETURN NEXT;
 END LOOP;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

The following PL/Proxy function definition created on the proxy database can be
used to split the calls across the partitions:

CREATE or REPLACE FUNCTION create_new_users(
 IN i_username text[], IN i_pwdhash text[], IN i_email text[],
 OUT status int, OUT message text) RETURNS SETOF RECORD
AS $$
 CLUSTER 'messaging';
 RUN ON hashtext(i_username);
 SPLIT i_username, i_pwdhash, i_email;
$$ LANGUAGE plproxy SECURITY DEFINER;

It would be called by sending in three arrays to the function:

SELECT * FROM create_new_users(
 ARRAY['bob', 'jane', 'tom'],
 ARRAY[md5('bobs_pwd'), md5('janes_pwd'), md5('toms_pwd')],
 ARRAY['bob@mail.com', 'jane@mail.com', 'tom@mail.com']
);

Scaling Your Database with PL/Proxy

[208]

It will result in two parallel calls to partitions 1 and 2 (as using hashtext(i_username)
tom and bob map to partition 1 and mary to partition 2 of total for partitions as
explained earlier), with the following arguments for partition 1:

SELECT * FROM create_new_users(
 ARRAY['bob', 'tom'],
 ARRAY['6c6e5b564fb0b192f66b2a0a60c751bb',
 'edcc36c33f7529f430a1bc6eb7191dfe'],
 ARRAY['bob@mail.com','tom@mail.com']
);

And this for partition 2:

SELECT * FROM create_new_users(
 ARRAY['jane'],
 ARRAY['cbbf391d3ef4c60afd851d851bda2dc8'],
 ARRAY['jane@mail.com']
);

Then, it returns a concatenation of the results:

status | message

--------+---------

 200 | OK

 200 | OK

 200 | OK

(3 rows)

Distribution of data
First, what is a cluster in PL/Proxy? Well, the cluster is a set of partitions that make
up the whole database. Each cluster consists of a number of partitions as determined
by the cluster configuration. Each partition is uniquely specified by its connect string.
The list of connection strings is what makes up a cluster. The position of the partition
in this list is what determines the partition number, so the first element in the list is
partition 0, the second partition is 1, and so on.

The partition is selected by the output of the RUN ON function, and then masked
by the right number of bits to map it on partitions. So, if hashtext(i_username)
returns 14 and there are four partitions (2 bits, mask binary 11 or 3 in decimal), the
partition number will be 14 and 3 = 2, and the function will be called on partition 2
(starting from zero), which is the third element in partition list.

Chapter 9

[209]

The constraint that the number of partitions has to be a power of two
may seem an unnecessary restriction at first, but it was done in order to
make sure that it is, and it will remain to be, easy to expand the number of
partitions without the need to redistribute all the data.
For example, if you tried to move from three partitions to four, most
likely 3/4th of the data rows in partitions 0 to 2 have to be moved to new
partitions to evenly cover 0 to 3. On the other hand, when moving from
four to eight partitions, the data for partitions 0 and 1 is exactly the same
that was previously on partition 0, 2-3 is old 1 and so on. That is, your
data does not need to be moved immediately, and half of the data does
not need to be moved at all.

The actual configuration of the cluster, the definition of partitions can be done in
two ways, either by using a set of functions in schema plproxy, or you can take
advantage of the SQL/MED connection management. (SQL/MED is available
starting PostgreSQL 8.4 and above.)

Configuring PL/Proxy cluster using functions
This is the original way to configure PL/Proxy, which works on all versions of
PostgreSQL. When a query needs to be forwarded to a remote database, the function
plproxy.get_cluster_partitions(cluster) is invoked by PL/Proxy to get the
connection string to use for each partition.

The following function is an example which returns information for a cluster with
four partitions, p0 to p3:

CREATE OR REPLACE FUNCTION plproxy.get_cluster_partitions(cluster_name
text)
RETURNS SETOF text AS $$
BEGIN
 IF cluster_name = 'messaging' THEN
 RETURN NEXT 'dbname=p0';
 RETURN NEXT 'dbname=p1';
 RETURN NEXT 'dbname=p2';
 RETURN NEXT 'dbname=p3';
 ELSE
 RAISE EXCEPTION 'Unknown cluster';
 END IF;
END;
$$ LANGUAGE plpgsql;

Scaling Your Database with PL/Proxy

[210]

A production application might query some configuration tables or even read
some configuration files to return the connection strings. Once again, the number
of partitions returned must be a power of two. If you are absolutely sure that some
partitions are never used, you can return empty strings for these.

We also need to define a plproxy.get_cluster_version(cluster_name) function.
This is called on each request and if the cluster version has not changed, the output
from a cached result from plproxy.get_cluster_partitions can be reused. So, it
is best to make sure that this function is as fast as possible:

CREATE OR REPLACE FUNCTION plproxy.get_cluster_version(cluster_name
text)
RETURNS int4 AS $$
BEGIN
 IF cluster_name = 'messaging' THEN
 RETURN 1;
 ELSE
 RAISE EXCEPTION 'Unknown cluster';
 END IF;
END;
$$ LANGUAGE plpgsql;

The last function needed is plproxy.get_cluster_config, which enables you to
configure the behavior of PL/Proxy. This sample will set the connection lifetime to
10 minutes:

CREATE OR REPLACE FUNCTION plproxy.get_cluster_config(
 in cluster_name text,
 out key text,
 out val text)
RETURNS SETOF record AS $$
BEGIN
 -- lets use same config for all clusters
 key := 'connection_lifetime';
 val := 10*60;
 RETURN NEXT;
 RETURN;
END;
$$ LANGUAGE plpgsql;

Chapter 9

[211]

Configuring PL/Proxy cluster using SQL/MED
Since version 8.4, PostgreSQL has support for an SQL standard for management
of external data, usually referred to as SQL/MED. SQL/MED is simply a
standard way to access data that resides outside the database. Using functions to
configure partitions is arguably insecure, as any caller of plproxy.get_cluster_
partitions() can learn connection strings for partitions that may contain sensitive
info like passwords. PL/Proxy also provides a way to do the cluster configuration
using SQL/MED, which follows the standard SQL security practices.

The same configuration as discussed earlier, when done using SQL/MED is as follows:

1.	 First, create a foreign data wrapper called plproxy:
proxy1=# CREATE FOREIGN DATA WRAPPER plproxy;

2.	 Then create an external server that defines both the connection options and
the partitions:
proxy1=# CREATE SERVER messaging FOREIGN DATA WRAPPER plproxy
proxy1-# OPTIONS (connection_lifetime '1800',
proxy1(# p0 'dbname=p0',
proxy1(# p1 'dbname=p1',
proxy1(# p2 'dbname=p2',
proxy1(# p3 'dbname=p3'
proxy1(#)
CREATE SERVER

3.	 Finally, grant usage on this server to either PUBLIC so all users can use it:
proxy1=# CREATE USER MAPPING FOR PUBLIC SERVER messaging;
CREATE USER MAPPING

Or, to some specific users or groups:
proxy1=# CREATE USER MAPPING FOR bob SERVER messaging
proxy1-# OPTIONS (user 'plproxy', password 'very.secret');
CREATE USER MAPPING

4.	 Then, grant usage on the cluster to the users who need to use it:
proxy1=# GRANT USAGE ON FOREIGN SERVER messaging TO bob;
GRANT

More info on SQL/MED as implemented in PostgreSQL can be
found at http://www.postgresql.org/docs/current/
static/sql-createforeigndatawrapper.html.

Scaling Your Database with PL/Proxy

[212]

Moving data from the single to the partitioned
database
If you can schedule some downtime and your new partition databases are as big
as your original single database, the easiest way to partition the data is to make
a full copy of each of the nodes and then simply delete the rows that do not belong
to the partition:

pg_dump chap9 | psql p0

psql p0 -c 'delete from message where hashtext(to_user) & 3 <> 0'

psql p0 -c 'delete from user_info where hashtext(username) & 3 <> 0'

Repeat this for partitions p1 to p3, each time deleting rows which don't match the
partition number (psql chap9p1 -c 'delete … & 3 <> 1).

Remember to vacuum when you are finished deleting the rows.
PostgreSQL will leave the dead rows in the data tables, so do a
little maintenance while you have some downtime.

When trying to delete from user_info, you will notice that you can't do it without
dropping a foreign key from messages.from_user.

Here, we could decide that it is OK to keep the messages on the receivers partition
only, and if needed, that the sent messages can be retrieved using a RUN ON ALL
function. So, we will drop the foreign key from messages.from_user.

psql p0 -c 'alter table message drop constraint message_from_user_fkey

There are other options when splitting the data that requires less disk space usage for
database system if you are willing to do more manual work.

For example, you can copy over just the schema using pg_dump -s and then use
COPY from an SQL statement to move over just the needed rows:

pg_dump -s chap9 | psql p0

psql chap9 -c "COPY (select * from messages where hashtext(to_user) & 3 =
0) TO stdout" | psql p0 -c 'COPY messages FROM stdin'

...

Or even set up a specially designed Londiste replica and do the switch from
single database to partitioned cluster in only seconds once the replica has
reached a stable state.

Chapter 9

[213]

Summary
In this chapter, we have gone over the process of database sharding for databases
that are too big to take the write load on a single host, or where you just want to have
the added resilience of having a system, where one host being down does not bring
the whole system down.

In short, the process is:

•	 Decide which tables you want to split over multiple hosts
•	 Add the partition databases and move the data
•	 Set up the proxy functions for all the functions accessing those tables
•	 Watch for a little while that everything is working
•	 Relax

Also, we also took a brief look at using PL/Proxy for simple remote queries to other
PostgreSQL databases, which may be handy for some tasks even after the new
Foreign Data Wrapper (FDW) functionality in PostgreSQL replaced it for many uses.

While PL/Proxy is not for everyone, it may well save the day if you are suddenly
faced with rapid database growth and have the need for an easy and clean way to
spread the database over many hosts.

Publishing Your Code as
PostgreSQL Extensions

If you are new to PostgreSQL, now is the time to dance for joy.

Now that you're done dancing, I'll tell you why. You have managed to avoid the
"bad old days" of contrib modules. Contrib modules are the installation systems
that were used to install related PostgreSQL objects prior to Version 9.1. They may
be additional data types, enhanced management functions, or just really any type
of module you want to add to PostgreSQL. They consist of any group of related
functions, views, tables, operators, types, and indexes that were lumped into an
installation file and committed to the database in one fell swoop. Unfortunately,
contrib modules only provided for installation, and nothing else. In fact, they were
not really an installation system at all. They were just some unrelated SQL scripts
that happened to install everything that the author thought you needed.

PostgreSQL extensions provide many new services that a package management
system should have. Well...at least the ones that module authors complained the
most about not being present.

Some of the new features that you will be introduced to in this chapter include
versioning, dependencies, updates, and removal.

When to create an extension
Well, first you have to understand that extensions are all about togetherness.
Once the objects from a contrib module were installed, PostgreSQL provided no
way to show a relationship between them. This led many developers to create their
own (and sometimes rather ingenious) methods to version, update, upgrade, and
uninstall all of the necessary "stuff" to get a feature to work.

Publishing Your Code as PostgreSQL Extensions

[216]

So, the first question to ask yourself when contemplating a PostgreSQL extension
as a way to publish your code is, "How does all of the "stuff" in my extension
relate together?"

This question will help you make extensions that are as granular as reasonable.
If the objective is to enhance PostgreSQL with the ability to provide an inventory
management system, maybe it would be better to start with an extension that provides
a bill of material's data type first, and subsequently build additional extensions that
are dependent upon that one. The moral of the story is to dream big, but create each
extension with only the smallest number of related items that make sense.

A good example of an extension that provides a feature to PostgreSQL is OpenFTS.
This extension provides full text searching capabilities to PostgreSQL by creating
data types, indexes, and functions that are well related to each other.

Another type of extension is PostGIS, which provides a rich set of tools to deal with
geographic information systems. Although this extension provides many more bits
of functionality than OpenFTS, it is still as granular as possible by virtue of the fact
that everything that is provided is necessary for geographic software development.

Possibly you are a book author, and the only relationship that the objects in your
extension have is that they need to be conveniently removed when your poor victim
...ahem...the reader is through with them. Welcome to the wonders of extensions.

For a list of very useful extensions that have gained some community popularity,
you might want to take a look at this page fairly often:

http://www.postgresql.org/download/products/6/

You should also take a look at the PostgreSQL extension network at
http://www.pgxn.org.

To find out what objects can be packaged into an extension, look at the ALTER
EXTENSION ADD command in the PostgreSQL documentation:

http://www.postgresql.org/docs/current/static/sql-alterextension.html

Chapter 10

[217]

Unpackaged extensions
Starting with Version 9.1, PostgreSQL provides a convenient way to move from
the primordial ooze of unversioned contrib modules into the brave new world of
extensions. Basically, you provide an SQL file to show the relationship of the objects
to the extension. The contrib module's cube provides a good example of this in
cube--unpackaged--1.0.sql:

/* contrib/cube/cube--unpackaged--1.0.sql */

-- complain if script is sourced in psql, rather than via CREATE
EXTENSION
\echo Use "CREATE EXTENSION cube" to load this file. \quit

ALTER EXTENSION cube ADD type cube;
ALTER EXTENSION cube ADD function cube_in(cstring);
ALTER EXTENSION cube ADD function cube(double precision[],double
precision[]);
ALTER EXTENSION cube ADD function cube(double precision[]);
...

The code that provides multidimensional cubes for PostgreSQL has been stable for
quite some time. It is unlikely that a new version will be created any time soon. The
only reason for this module to be converted into an extension is to allow for easy
installation and removal.

You would then execute the command:

CREATE EXTENSION cube FROM unpackaged;

The unrelated items are now grouped together into the extension named cube. This
also makes it easier for the packaging maintainer on any platform to include your
extension into the repository. We'll show you how to make the packages to install
your extension in the Building an extension section.

Extension versions
The version mechanism for PostgreSQL extensions is simple. Name it whatever you
want and give it whatever alphanumeric version number that suits your fancy. Easy,
eh? Just name the files with this format:

extension--version.sql

Publishing Your Code as PostgreSQL Extensions

[218]

If you want to provide an upgrade path from one version of your extension to
another, you would provide the file:

extension--oldversion--newversion.sql

This simple mechanism allows PostgreSQL to update an extension that is already in
place. Gone are the days of painful exporting and re-importing data just to change
the definition of a data type. So, let's go ahead and update our example extension
using the file postal--1.0--1.1.sql. This update is as easy as:

ALTER EXTENSION postal UPDATE TO '1.1';

A note of caution: PostgreSQL does not have any concept of what your version number
means. In this example, the extension was updated from Version 1.0 to 1.1 because we
explicitly provided a script for that specific conversion. PostgreSQL did not deduce
that 1.1 follows 1.0. We could have just as easily used the names of fruits or historical
battleships for our version numbers and the result would have been the same.

PostgreSQL will use multiple update files if necessary to achieve the desired result.
Given the following command:

ALTER EXTENSION postal UPDATE TO '1.4';

PostgreSQL will apply the files postal--1.1--1.2.sql, postal--1.2--1.3.sql
and postal--1.3--1.4.sql in the correct order to achieve the desired version.

You may also use this technique to provide upgrade scripts that are in fact
downgrade scripts, that is, they actually remove functionality. Be careful with
this, though. If a path to a desired version is to downgrade before an upgrade,
PostgreSQL will take the shortest route. This may result in some unintended results,
including data loss. My advice would be to not provide downgrade scripts. The risk
just isn't worth it.

The .control file
Along with the extension installation script file, you must provide a .control file.
The .control file for our example postal.control looks like this:

postal address processing extension
comment = 'utilities for postal processing'
default_version = '1.0'
module_pathname = '$libdir/postal'
relocatable = truerequires = plpgsql

Chapter 10

[219]

The purpose of the .control file is to provide a description of your extension.
This metadata may include directory, default_version, comment, encoding,
module_pathname, requires, superuser, relocatable, and schema.

The main PostgreSQL documentation for this file is located at
http://www.postgresql.org/docs/current/static/extend-extensions.html.

This example shows a requires configuration parameter. Our extension depends
on the procedural language PL/pgSQL. On most platforms, it is installed by default.
Unfortunately, it is not installed on all platforms, and nothing should be taken
for granted.

Multiple dependencies can be indicated by separating them with commas. This is
very handy when constructing a set of services based on multiple extensions.

As we mentioned in the previous section, PostgreSQL does not provide any
interpretation of the version number of an extension. Versions can be names as well
as numbers, so there is no way for PostgreSQL to interpret that postal--lamb.sql
comes before postal--sheep.sql. This design limitation poses a problem to the
extension developer, in that there is no way to specify that your extension depends
on a specific version of another extension. I would love to see this configuration
parameter enhanced with a syntax like requires = postgis >= 1.3, but alas, no
such construction exists at the moment.

Building an extension
We have already covered the basics of creating a script file and a .control file.
Actually, that is all that is necessary for a PostgreSQL extension. You may simply
copy these files into the shared extension directory on your computer and execute
the following command:

CREATE EXTENSION postal;

This will install your extension into the currently selected database.

The shared extension path is dependent on how PostgreSQL is installed, but for
Ubuntu, it is /usr/share/postgresql/9.2/extension.

However, there is a much better way to do this that works with any package
manager on any platform.

PostgreSQL provides an extension building toolkit as a part of the server
development package. To install this package on Ubuntu, you can type:

sudo apt-get install postgresql-dev-9.2

Publishing Your Code as PostgreSQL Extensions

[220]

This will install all of the PostgreSQL source code necessary to create and install an
extension. You would then create a file named Makefile in the same directory as the
rest of your extension files. The content of this file looks like this:

EXTENSION = postal

DATA = postal--1.0.sql

PG_CONFIG = pg_config

PGXS := $(shell $(PG_CONFIG) --pgxs)

include $(PGXS)

This simple Makefile file will copy your extension script file and the .control
file into the proper shared extension directory on any platform. Invoke it with
this command:

sudo make install

You will see some output like this:

/bin/mkdir -p '/usr/share/postgresql/9.1/extension'

/bin/sh /usr/lib/postgresql/9.1/lib/pgxs/src/makefiles/../../config/
install-sh -c -m 644 ./postal.control '/usr/share/postgresql/9.1/
extension/'

/bin/sh /usr/lib/postgresql/9.1/lib/pgxs/src/makefiles/../../config/
install-sh -c -m 644 ./postal--1.0.sql '/usr/share/postgresql/9.1/
extension/'

Your extension is now located in the proper directory for installation. You can install
it into the current database with:

CREATE EXTENSION postal;

You will then see the confirmation text letting you know that you have now
gone postal:

CREATE EXTENSION

Chapter 10

[221]

Installing an extension
Extensions that have been packaged for you by your friendly distribution manager
are very simple to install using the following command:

CREATE EXTENSION extension_name;

Most of the popular Linux distributions include a package called something like
postgresql-contrib-9.2. This naming convention is left over from the contrib
style installation of PostgreSQL objects. Don't worry, for PostgreSQL 9.2 this package
will actually provide extensions rather than contrib modules.

To find out where the files were placed on Ubuntu 10.04 Linux, you can execute the
following command:

pg_config --sharedir

This will show you the shared component's installation directory:

/usr/share/postgresql/9.2

The extensions will be located in a directory called extension, immediately below the
shared directory. This will then be named /usr/share/postgresql/9.2/extension.

To see what extensions are available for you to install, try this command:

ls $(pg_config –sharedir)/extension/*.control

This will show you all the extensions that have been made available to you by your
Linux distribution package management system.

For extensions that you have created yourself, you must copy your SQL script file
and the .control file to the shared extension directory before invoking CREATE
EXTENSION in PostgreSQL.

cp postal.control postal--1.0.sql $(pg_config --sharedir)/extension

To see the procedure for doing this reliably on any target platform, refer to the
Building an Extension section.

Publishing Your Code as PostgreSQL Extensions

[222]

Publishing your extension
Thank you for contributing to the PostgreSQL community! Your support will not go
unnoticed in this gathering of like-minded guys that are all a slightly smarter than
each other. Your work will be seen by dozens of developers looking for community
solutions to common problems. You have made the open source world a better place.

Since we are talking about publication, you should consider the licensing model for
your extension. The publication methods that we are about to describe assume that
the extension will be made available to the general public. As such, please consider
the PostgreSQL license for your extension. You can find the current one here:

http://www.postgresql.org/about/licence/

Introduction to the PostgreSQL Extension
Network
When you want to publish your module, you could start writing packaging scripts
for each of the distribution systems for every operating system. This is the way the
PostgreSQL extensions have been distributed in the past. This distribution system
has not been very friendly to the open source community, or very well received. In an
effort to make extension publication more palatable, a group of open source writers
and backing companies got together and founded the PostgreSQL Extension Network.

The PostgreSQL Extension Network http://pgxn.org/ provides a central
repository for your open source extensions. By the kindness of the maintainers,
it also provides installation scripts for your extensions that will work on most
of the popular PostgreSQL deployment operating systems.

Signing up to publish your extension
To sign up to publish your extension, perform the following steps:

1.	 Start by requesting an account on the management page:
http://manager.pgxn.org.

2.	 Click on Request Account and fill in your personal information. The
PostgreSQL Extension Network folks will get back to you via e-mail after an
actual human processes your sign up request.

Chapter 10

[223]

3.	 Click on the provided link in the e-mail to confirm your account and set a
new password on the PGXN website:

This site does not have a secure certificate that any of the common Internet
browsers support. The first thing you will see is a page to confirm that you
have not made an error in coming here:

Publishing Your Code as PostgreSQL Extensions

[224]

4.	 Confirm the server certificate by adding an exception to the browser rules.
Click on Add Exception and in the next screen make the exception permanent:

5.	 Click on Confirm Security Exception.
You will then be prompted to create a password for your account:

Chapter 10

[225]

6.	 Set a password that you will remember, and confirm by typing it again. Click
on Change and you will be welcomed to the site:

That is all there is to getting signed up. Once you have your new account set up,
you can do some things that will make PostgreSQL extension programming much
more painless.

Creating an extension project the easy way
First, let's install some utility packages that will create a lot of boilerplate files that we
have already described in earlier sections:

apt-get install ruby

apt-get install rubygems

apt-get install ruby1.8-dev

apt-get install libopenssl-ruby1.8

gem install rubygems-update

/var/lib/gems/1.8/bin/update_rubygems

gem install pgxn_utils

Publishing Your Code as PostgreSQL Extensions

[226]

You will now find that you have a utility installed named pgxn-utils. This utility
makes it super simple to create an extension project.

pgxn-utils skeleton myextension

 create myextension

 create myextension/myextension.control

 create myextension/META.json

 create myextension/Makefile

 create myextension/README.md

 create myextension/doc/myextension.md

 create myextension/sql/myextension.sql

 create myextension/sql/uninstall_myextension.sql

 create myextension/test/expected/base.out

 create myextension/test/sql/base.sql

Wow! All of the files that we have mentioned so far just got created in a single step.
Several files also got created to support the old contrib style of deployment. The next
few sections will show which ones are important to you for extension development.

This package management system has one notable restriction. In contrast to
PostgreSQL, which allows version numbers to be any alphanumeric text, this
package management requires version numbers to follow the rules of semantic
versioning. This version format includes major version, minor version, and release
number in the format major.minor.release. This is to assist the package manager
in installing your package on multiple operating system platforms. Just go with it,
you'll thank us later.

Providing the metadata about the extension
There are three files used to provide data about the extension. The PostgreSQL
Extension Network uses one of them on the website, META.json, for search criteria
and description text for the extension. META.json will be located in myextension/
META.json.

Here is an example:

{
 "name": "myextension",
 "abstract": "A short description",
 "description": "A long description",
 "version": "0.0.1",
 "maintainer": "The maintainer's name",

Chapter 10

[227]

 "license": "postgresql",
 "provides": {
 "myextension": {
 "abstract": "A short description",
 "file": "sql/myextension.sql",
 "docfile": "doc/myextension.md",
 "version": "0.0.1"
 }
 },
 "release_status": "unstable",

 "generated_by": "The maintainer's name",

 "meta-spec": {
 "version": "1.0.0",
 "url": "http://pgxn.org/meta/spec.txt"
 }
}

You should add some sections to it to describe your keywords and any additional
resources that you make available to the user. These sections would look like this:

"tags": [
 "cures cancer",
 "myextension",
 "creates world peace"
],
"resources": {
 "bugtracker":
 {"web": "https://github.com/myaccount/myextension/issues/"},
 "repository": {
 "type": "git",
 "url": "git://github.com/myaccount/myextension.git",
 "web": "https://github.com/myaccount/myextension/"
 }
 }

The complete file would then look like this:

{
 "name": "myextension",
 "abstract": "A short description",
 "description": "A long description",
 "version": "0.0.1",

Publishing Your Code as PostgreSQL Extensions

[228]

 "maintainer": "The maintainer's name",
 "license": "postgresql",
 "provides": {
 "myextension": {
 "abstract": "A short description",
 "file": "sql/myextension.sql",
 "docfile": "doc/myextension.md",
 "version": "0.0.1"
 }
 },
 "release_status": "unstable",

 "generated_by": "The maintainer's name",

 "meta-spec": {
 "version": "1.0.0",
 "url": "http://pgxn.org/meta/spec.txt"
 }
 "tags": [
 "cures cancer",
 "myextension",
 "creates world peace"
],
 "resources": {
 "bugtracker":
 {"web": "https://github.com/myaccount/myextension/issues/"},
 "repository": {
 "type": "git",
 "url": "git://github.com/myaccount/myextension.git",
 "web": "https://github.com/myaccount/myextension/"
 }
 }
}

The next file that you will need to modify is README.md. This file is located in
myextension/README.md. An example is provided with the code that accompanies
this book. Due to the length, it will not be reproduced here. This file is distributed
along with your extension. It is a plain text file that is meant for human consumption.
Describe anything you like in it. Mine includes a recipe for doner kebabs. Quite
tasty! But most importantly, put a nice long description of the benefits and ease of
use of your extension. Finally, we come to doc/myextension.md. This file is used
by the PostgreSQL Extension Network to provide a very nice landing page for your
extension. It will look something like this:

Chapter 10

[229]

This file is formatted with wiki text markup. You may use several different markup
syntaxes here. A discussion of wiki markup is beyond the scope of this description, but
the formatting that is in the example is likely to be all that you will ever need anyway.

Here is an example of the content of the file:

myextension
===========

Synopsis

Publishing Your Code as PostgreSQL Extensions

[230]

 Show a brief synopsis of the extension.

Description

A long description

Usage

 Show usage.

Support

 There is issues tracker? Github? Put this information here.

Author

[The maintainer's name]

Copyright and License

Copyright (c) 2012 The maintainer's name.

Fill out the file with some descriptive narrative about your extension. Add anything
that you think might be relevant to the developer that is evaluating your extension
before making a decision to install it. This is your chance to impress the masses of
PostgreSQL developers. Don't be shy here.

Writing your extension code
Put your SQL code in the file that was provided for you in myextension/sql/
myextension.sql. This file should contain all of the objects that make up
your extension.

/* myextension.sql */

-- complain if script is sourced in psql, rather than via CREATE
EXTENSION
\echo Use "CREATE EXTENSION myextension" to load this file. \quit

CREATE FUNCTION feed_the_hungry() ...

Chapter 10

[231]

You can provide any additional SQL files in the same directory for maintaining
versions as described in the Extension versions section. Anything named *.sql
that is located in this directory will be included in the distribution.

Creating the package
To ultimately submit our extension to the PostgreSQL Extension Network, we
need to package all the files into a single zip file. Assuming we're following good
practices, and we're keeping all of our source code in a handy Git repository, we
can create the package through a simple git command. Try this one on for size:

git archive --format zip --prefix=myextension-0.0.1/ \

 --output ~/Desktop/myextension-0.0.1.zip master

This command will create a package for you that is suitable for submission to the
PostgreSQL Extension Network. All we need to do now is submit it.

Submitting the package to PGXN
Now that you have a nice ZIP file in hand, you can go to the PostgreSQL Extension
Network and make your accomplishment available to the community.

1.	 Start by going to http://www.pgxn.org:

Publishing Your Code as PostgreSQL Extensions

[232]

2.	 At the bottom of the page is a link named Release It. Click on the link and
you will be taken to the PGXN Manager where you should log in with the
username and password that you created in the first section:

Chapter 10

[233]

3.	 Click on the link Upload a Distribution. This will bring you to the
screen where you can upload the ZIP file that you created in the
Creating the package section:

4.	 Browse your computer for the ZIP file and upload it to the PostgreSQL
Extension Network.

That's it. Thanks again for contributing to the PostgreSQL community.

Publishing Your Code as PostgreSQL Extensions

[234]

Installing an extension from PGXN
The PostgreSQL Extension Network provides a platform-independent tool to
install PostgreSQL extensions. This tool is written in Python, and uses the Python
installation system for distribution of itself. This is handy because the Python
distribution system exists virtually on every PostgreSQL supportable platform and
makes it very simple to get PostgreSQL extensions distributed to the community.
The extension installer works with a single set of instructions on all targets:

easy_install pgxnclient

Installing pgxncli.py script to /usr/local/bin

Installing pgxn script to /usr/local/bin

Processing dependencies for pgxnclient

Finished processing dependencies for pgxnclient

Now you have the tools installed to manage PostgreSQL extensions provided by the
PostgreSQL Extension Network.

Installing extensions is not really simple. For example, if we had a requirement to use
a new tinyint data type, we could add it with this command:

pgxn install tinyint

INFO: best version: tinyint 0.1.1

INFO: saving /tmp/tmpKvr0kM/tinyint-0.1.1.zip

INFO: unpacking: /tmp/tmpKvr0kM/tinyint-0.1.1.zip

INFO: building extension

...

The extension is now available in the shared extensions directory on your machine.
To activate it for any database, you would use the command that we started the
chapter with:

CREATE EXTENSION tinyint;

You will then see the confirmation text letting you know that tinyint has
been added:

CREATE EXTENSION

You now have the extension available for use in your local database. Enjoy!

Chapter 10

[235]

Summary
Wow, this has been a long hard road to getting an extension configured and
installed. We have used programming skills, system administrative skills, database
administrative skills, and wiki editing. Along the way we saw some ruby, python,
shell scripting, PL/pgSQL, and MediaWiki.

Believe it or not, this is the simplified process. Hard to imagine, eh? Well, continuous
work is being done on the PostgreSQL Extension Network to further simplify this
catastrophe of a development system. My thanks go out to David E. Wheeler and
crew for making this new system available. As the framework now exists to help with
the task, there will be dramatic improvement coming in the months and years ahead.

Now that I'm done complaining about it, this extension system is actually
revolutionary. I say this because no other database platform provides any such
framework at all. PostgreSQL is at the head of the pack when it comes to the ability
to make changes to the basic functionality of the product. The fact that extensions
can be installed and removed from the product is an indicator of how inviting
PostgreSQL is to the open source community.

Extend it to do whatever you want, and they'll give you the tools to do it. This makes
a PostgreSQL server the perfect framework to use for your data processing needs.

Index
Symbols
.control file

about 218
documentation, URL 219

#include "fmgr.h" 157
#include "postgres.h" 157
_PG_init() 187
*_to_xml function

about 92
variants 92

A
acquisition cost 34, 35
add_ab(PG_FUNCTION_ARGS) 157
add_func.c

#include "fmgr.h" 157
#include "postgres.h" 157
about 156
add_ab(PG_FUNCTION_ARGS) 157
Datum 157
PG_FUNCTION_INFO_V1(add_ab); 157
PG_MODULE_MAGIC; 157

add_func.sql.in 160
add(int, int)

functionality, adding 162
multiple arguments, working with 164-170
NULL arguments 162, 164

add_one() function 132
AFTER trigger 99, 106, 112
ALTER EXTENSION ADD command 216
ANY parameter 46
application design

about 40
databases, drawbacks 40

data locality 42, 43
encapsulation 41

arrays 69
assert

using 150
auditing

about 21, 22
ways 19

audit log
updating 109

audit trigger
creating 102

B
backend

synchronizing between 187
BEFORE trigger 106, 112

C
C

additional resources 188
caching 30, 31
cancel_op() 106
cancel trigger 105
C code, writing

guidelines 170
memory allocation 170

C function
add_func.c 156-158
add_func.sql.in 160, 161
CREATE FUNCTION add(int, int) 160
error, reporting from 172, 173
Makefile function 158, 159
URL 188

[238]

writing 161
C function, error reporting

Error, stating 173
messages sent, to client 174

changestamp() trigger function 108
CLUSTER statement 205
commit 187
community 37
Concurrent Versions System (CVS) 122
conditional expressions

about 53, 55
example 111
loops, with counters 58, 59
PERFORM command versus SELECT

command 62
query results, looping 59
URL 58

conditional trigger 110
CONNECT statement 205
connect string 205
context managers

URL 147
Coordinated Universal Time (UTC) 102
Cost 46
CREATE command 134
CREATE FUNCTION 97, 160
CREATE FUNCTION add(int, int) 160
CREATE FUNCTION statement 160
CREATE TABLE statement 63
CREATE TRIGGER 97
CREATE TYPE command 72
ctags

URL 188
cursors

about 86
advantages 90
disadvantages 90
returned by functions, wrapup 90
returned from another function, iterating

over 88, 89
returning 86-88

D
data

changes, visibility 177
cleaning 25, 26

comparing, operators used 14
distributing 208, 209
moving, from single to partitioned

database 212
partitioning, across multiple

servers 200, 201
splitting 201-203

data abstraction layer 41
database

changes, capturing 186
database-backed systems, growing

bigger server, moving to 199
Master-slave replication 199
Multi-master replication 200
ways 199

database, scaling
data, moving from single to partitioned

database 212
single-server chat 191-198
tables, splitting over multiple

databases 199
with PL/Proxy 191

database_to_xml(...) function 93
data locality

about 42
limitations 42

Data Management Language (DML) 101
data manipulation code

advantages 31, 32
data type

conversions 131
data types, complex

JSON 90
XML 90

Datum 157, 182
datums pointer 167
DBAPI 2 136
debugging

manual debugging 116
visual debugging 122

debugging, manual
exceptions, throwing 118, 119
file, logging to 120
with RAISE NOTICE 116, 117

debugging, visual
debugger, installing 122
debugger, using 123, 124

[239]

pgAdmin3, installing 122
DELETE trigger

about 99
disallowing 104, 105

dirty read 43
don't repeat yourself. See DRY
DO syntax 144
DRY 28

E
e-mail

sending 153
encapsulation 41
ereport() 173, 174
error codes

URL 119
error handling 44
error reporting

about 44
from C function 172, 173
URL 174

error_trap_report function 119
event_time_utc 102
exceptions

handling 145
execute() method 134
EXECUTE statement 61
extension

.control file 218, 219
building 219, 220
code, writing 230, 231
creating 215, 216
installing 221
installing, from PGXN 234
OpenFTS, type 216
PostGIS,type 216
project, creating 225, 226
publishing 222
unpackaged 217
URL 216
versions 217, 218

extension, altering
URL 216

extension, publishing
extension code, writing 230, 231
extension project, creating 225

metadata, providing 226-230
package, creating 231
package, submitting to PGXN 231-233
PostgreSQL Extension Network 222
signing up 222-225

F
failing quickly 115
file

including 171
logging 141

file type 143
flatten_application_settings() function 66
FOR EACH ROW trigger 101
format_us_address() function 117
function

about 44, 49
arguments, accessing 51, 52
progress tracking, plpy.notice() used 148,

149
record, returning 133
results 66, 67
table functions 135
used, for configuring PL/Proxy

cluster 209, 210
views based 73-76

function overloading 45
function parameter 52

G
generate_series() function 196
get_new_messages() function 198
get_user_email() 207
GIN (General Inverted Index) 30

H
horizontal distribution 191

I
immutable fields trigger 108
IMMUTABLE function 111
indexes

adding, for retrieving messages 197
INFO 173

[240]

INOUT parameters 78
INSTEAD OF trigger 112
integrity checks

PL/pgSQL, using 10, 11

J
JSON

data, returning 93-95

K
keep it simple stupid. See KISS
KISS 27, 28
K Nearest Neighbor. See KNN
KNN 30

L
licensing 36
LOG (and COMMERROR) 173
log function 143
log_min_messages 120
looping syntax

URL 59
loops

with counters 58, 59
Low cost of acquisition. See low cost of

failure
low cost of failure 35

M
Makefile file 220
Makefile function 158-160
Master-slave replication 199
memory allocation

about 170
files, including 171, 172
palloc(), using 171
pfree(), using 171
public symbol names 172
structures, zero-filling 171

memset() 171
metadata

providing, for extension 226-230
mid function 51
Multi-master replication 200

myfunc function 88
mysetfunc(); function 87
MySQL

URL 37

N
NEW record, modifying

trigger, timestamping 107
NOTICE 173
NULL propagation 117

O
object identifier (OID) 139
OLD, NEW variable 112
OpenFTS 216
operators

used, for data comparisons 14
OUT parameters 78

P
package

creating 231
submitting, to PGXN 231-233

palloc()
about 183
using 171

part_func() 205
Pentaho Data Integration (kettle) 39
Pentaho Report Server 39
PERFORM command

versus SELECT command 62
pfree()

about 183
using 171

pgAdmin3
about 39, 44
installing 122

pgFoundry
about 188
URL 122, 188

PG_FUNCTION_INFO_V1(add_ab); 157
PG_MODULE_MAGIC; 157
PGXN

extension, installing from 234
package, submitting 231-233

[241]

URL 231
pgxn-utils utility 226
php5-postgesql 39
platform compatibility 39
PL/pgSQL

about 10, 50
advantages 50
cursors, URL 87
disadvantages 50
URL 50
used, for integrity checks 10-12

PL/pgSQL debugger
about 122
advantages 124
disadvantages 125
installing 122
using 123, 124

PL/pgSQL function
arguments, accessing 51, 52
structure 50, 51

PL/pgSQL trigger function
variables, passed 112

PL/Proxy
CLUSTER statement 205
CONNECT statement 205
data, distributing 208
installing 204
RUN ON statement 205
SELECT statement 206
SPLIT statement 207
syntax 204
TARGET statement 206

PL/Proxy cluster
configuring, functions used 209, 210
configuring, SQL/MED used 211

plproxy.get_cluster_partitions() 211
plproxy.get_cluster_version(cluster_name)

function 210
plpy.execute() 136, 146
plpy.execute(...) function 148
plpy.notice()

about 149
used, for tracking function's

progress 148, 149
plpy.prepare() function 136, 146, 148
plpy.quote_ident(name) function 144
plpy.quote_literal(litvalue) function 145

plpy.quote_literal() method 134
plpy.quote_nullable(value_or_none)

function 145
plpy.subtransaction() 146
PL/Python

about 130
atomicity 147
data type conversions 131, 132
debugging 148
documentation, URL 131
exceptions, handling 145, 146
function, creating 130
functions, writing 132
queries, constructing 144, 145
queries, running in database 136
record, returning by function 133, 134
simple function 132
table functions 135
trigger functions, writing 138, 139
uses 129

PL/Python, debugging
assert, using 150
function progress tracking, plpy.notice()

used 148, 149
sys.stderr, redirecting 150
sys.stdout, redirecting 150

pluggable languages
disadvantages 155

plugins 38
PostGIS 216
PostgreSQL

about 10, 33, 35
acquisition cost 34
community 37
developers, availability 35
expanded display, switching to 13
extension 215
licensing 36
predictability 37
procedural languages 38, 39
URL 37

PostgreSQL back-end coding
guidelines 170

postgresql.conf file
about 188
URL 188

[242]

PostgreSQL Extension Network
about 222
URL 216, 222

PostgreSQL functions
C function, SPI used 175, 176
data changes, visibility 177
SPI_* functions 177
URL 49

PostgreSQL internals
URL 188

PostgreSQL license
URL 222

PostgreSQL, products
BIRT 39
Pentaho Data Integration (kettle) 39
Pentaho Report Server 39
PgAdmin3 39
php5-postgesql 39
psycopg2 39
Qcubed 39
Talend 39
Yii 39

PostgreSQL server
about 7
auditing, changes 19-23
caching 30
code examples 12
custom sort orders 26, 27
data cleaning 25, 26
data management, with triggers 16-18
implementing 7
server programming 9

predictability 37
prepare() method 134
procedural languages

application design 40
platform compatibility 39

prototyping 115
psql command line client 44
psycopg2 39
public symbol names 172
Python

atomicity 147
Python Database API Specification v2.0 136.

See DBAPI 2
Python Imaging Library (PIL) 152

Q
Qcubed 39
Quality Assurance (QA) 115
queries

constructing 144
prepared queries, caching 138
prepared queries, using 137
running 174
running, in database 136
simple queries, running 136

query results
looping 59-62

R
RAISE command 118
RAISE NOTICE

about 121
advantages 121
debugging, manual 116, 117
disadvantages 122

RAISE statement
syntax, URL 121

range 135
Read Committed 43
record

returning 63, 65, 78, 79
record, handling

as arguments 177-179
as returned values 177-179
Datum 182
fields, extracting from argument tuple 181
record sets, returning 183, 184
return tuple, constructing 181
single record, returning 179

record sets
returning 183, 184

refcursor 87
replication

Master-slave replication 199
Multi-master replication 200

restricted. See trusted
RETURN function 70
RETURN SETOF variants

SETOF RECORD 86
SETOF <table/view> 86

[243]

SETOF <type> 86
TABLE (...) 86

RETURNS TABLE
using 80, 81

RETURNS TABLE(...) function 80
RETURN statement 71
reversed_vowels(word) 27
rollback 187
ROLLBACK command 141
running_queries(int, int) function 77
RUN ON ALL function 205
RUN ON ALL statement

uses 205
RUN ON ANY statement 205
RUN ON function 208
RUN ON statement 205

S
SAVEPOINT attributes 146
SAVEPOINT foo; command 146
Security Definer 46
Security Invoker 46
SELECT command

versus PERFORM command 62
SELECT statement 61, 206
sequence object 44
server

bigger server, moving to 199
data, partitioning across multiple

servers 200, 201
server programming

about 9
acquisition cost 35
integrity checks, PL/pgSQL used 10
need for 9

Server Programming Interface. See SPI
service-oriented architecture. See SOA
SETOF ANY

returning 83-85
SETOF RECORD, RETURNS 86
SETOF <table/view>, RETURNS 86
SETOF <type>, RETURNS 86
set-returning function

rows, returning from function 72
using 71

sets
about 69
of integers, returning 70, 71
returning 70

set_salary() function 23
simple queries

running 136
single-server chat

implementing 192-196
specifications 191, 192

skytools
URL 187

smtplib
URL 153

SOA 29
sorting 26, 27
SPI

about 174
examples, URL 177
URL 177
used, for C function 175, 176

SPI_exec() function 176
SPI_execute() 177
SPI_*() functions 177
SPLIT statement

array elements, distributing over multiple
partitions 207

spoiler alert 37
SQL injection 134
SQL/MED

URL 211
used, for configuring PL/Proxy cluster 211

SRF_FIRSTCALL_INIT() 183
SRF_PERCALL_SETUP() 183
SRF_RETURN_DONE() 184
STABLE function 111
STRICT keyword 162
structured data

arrays 69
complex data types 90
cursors, returning 86-88
function, views based 73-77
OUT parameters 78
records 78
returning 69
RETURN SETOF variants 86

[244]

set-returning function, using 71
sets 69
sets, returning 70
XML data type 91-93

structured data, returning
XML, from functions 91-93

structures
zero-filling 171

superuser 125
sys.stderr

redirecting 150
sys.stdout

redirecting 150

T
table function. See set-returning function
TABLE (...), RETURNS 86
tables

splitting, over multiple databases 199
table_ to_xml() function 93
Talend 39
TARGET statement 206
TD

about 139
TD["args"] key 139
TD["event"] key 139
TD["level"] key 139
TD["name"] key 139
TD["new"] key 139
TD["old"] key 139
TD["relid"] key 139
TD["table_name"] key 139
TD["table_schema"] key 139
TD["when"] key 139

TD["args"] key 139
TD["event"] key 139
TD["level"] key 139
TD["name"] key 139
TD["new"] key 139
TD["old"] key 139
TD["relid"] key 139
TD["table_name"] key 139
TD["table_schema"] key 139
TD["when"] key 139
text_to_cstring(<textarg>) function 176
TG_ARGV 98

TG_LEVEL variable 113
TG_NAME variable 113
TG_NARGS, TG_ARGV[] variable 113
TG_OP variable 113
TG_RELID variable 113
TG_TABLE_NAME variable 113
TG_TABLE_SCHEMA variable 113
TG_WHEN variable 113
third-party tools 39
thumbnails

generating, images saved 152, 153
tinyint data type 234
transaction isolation methods

URL 43
transactions 43
trigger

about 97
audit trigger 102
creating 98
data, managing 16, 18, 19
DELETE, disallowing 104, 105
firing, controlling 109
immutable fields trigger 108
logging 103, 104, 141-144
NEW record, modifying 106
simple trigger, creating 98-101
timestamping 107
TRUNCATE, disallowing 106
using 112

trigger, controlling
conditional trigger 110
on specific field changes 111

trigger dictionary. See TD
trigger function

about 16, 97
creating 97
inputs, exploring 140
log trigger 141-144
visibility 111
writing, in PL/Python 138

trigger function, PL/pgSQL
OLD, NEW variable 112
TG_LEVEL variable 113
TG_NAME variable 113
TG_NARGS, TG_ARGV[] variable 113
TG_OP variable 113
TG_RELID variable 113

[245]

TG_TABLE_NAME variable 113
TG_TABLE_SCHEMA variable 113
TG_WHEN variable 113

TRUNCATE command 101
TRUNCATE trigger

disallowing 106
trusted 128
trusted languages

and untrusted languages, comparing 127,
128

type extensibility 29

U
UDF 8, 44
udp log type 143
unknown return structure 81, 82
unnest() function 84
untrusted languages

and trusted languages, comparing 127, 128
database, corrupting 128
uses 129

UPDATE trigger 106
usagestamp() function 108
User defined functions. See UDF

V
variable parameters

URL 45

variadic argument lists 85
Version 0 Calling Conventions 158
Version 0, C function

URL 158
visibility

URL 112
visibility rules

URL 177
VOLATILE function

rules 112

W
WARNING 173

X
XML

data, returning from functions 91-93
XML data type

functions, URL 91

Y
YAGNI 28
yield keyword 183
Yii 39
you ain't gonna need it. See YAGNI

Thank you for buying
PostgreSQL Server Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL 9 Admin Cookbook
ISBN: 978-1-84951-028-8 Paperback: 360 pages

Solve real-world PostgreSQL problems with over
100 simple yet incredibly effective recipes

1.	 Administer and maintain a healthy database

2.	 Monitor your database ensuring that it
performs as quickly as possible

3.	 Tips for backup and recovery of your database

PostgreSQL 9.0 High Performance
ISBN: 978-1-84951-030-1 Paperback: 468 pages

Accelerate your PostgreSQL system and avoid the
common pitfalls that can slow it down

1.	 Learn the right techniques to obtain optimal
PostgreSQL database performance, from initial
design to routine maintenance

2.	 Discover the techniques used to scale successful
database installations

3.	 Avoid the common pitfalls that can slow your
system down

4.	 Filled with advice about what you should be
doing; how to build experimental databases
to explore performance topics, and then move
what you've learned into a production database
environment

Please check www.PacktPub.com for information on our titles

Instant PostgreSQL Starter
ISBN: 978-1-78216-756-3 Paperback: 48 pages

Discover how to get started using PostgreSQL with
minimum hassle!

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Get your database online, back it up, and make
it useful as quickly as possible

3.	 Discover how you can utilize PostgreSQL's
simple and dependable backup mechanism

Instant PostgreSQL Backup and
Restore How-to
ISBN: 978-1-78216-910-9 Paperback: 54 pages

A step-by-step guide to backing up and restoring
your database using safe, efficient, and proven
recipes

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Back up and restore PostgreSQL databases

3.	 Use built-in tools to create simple backups

4.	 Restore the easy way with internal commands

5.	 Cut backup and restore time with advanced
techniques

Please check www.PacktPub.com for information on our titles

		Cover

		Copyright

		Credits

		About the Authors

		About the Reviewer

		www.PacktPub.com

		Table of Contents

		Preface

		Chapter 1:
What Is a PostgreSQL Server?

		Why program in the server?

		Using PL/pgSQL for integrity checks

		About this book's code examples

		Switching to the expanded display

		Moving beyond simple functions

		Data comparisons using operators

		Managing related data with triggers

		Auditing changes

		Data cleaning

		Custom sort orders

		Programming best practices

		KISS – keep it simple stupid

		DRY – don't repeat yourself

		YAGNI – you ain't gonna need it

		SOA – service-oriented architecture

		Type extensibility

		On caching

		Wrap up – why program in the server?

		Performance

		Ease of maintenance

		Simple ways to tighten security

		Summary

		Chapter 2:
Server Programming Environment

		Cost of acquisition

		Availability of developers

		Licensing

		Predictability

		Community

		Procedural languages

		Platform compatibility

		Application design

		Databases are considered harmful

		Encapsulation

		What does PostgreSQL offer?

		Data locality

		More basics

		Transactions

		General error reporting and error handling

		User-defined functions (UDF)

		Other parameters

		More control

		Summary

		Chapter 3:
Your First PL/pgSQL Function

		Why PL/pgSQL?

		Structure of a PL/pgSQL function

		Accessing function arguments

		Conditional expressions

		Loops with counters

		Looping through query results

		PERFORM versus SELECT

		Returning a record

		Acting on function results

		Summary

		Chapter 4:
Returning Structured Data

		Sets and arrays

		Returning sets

		Returning a set of integers

		Using a set-returning function

		Returning rows from a function

		Functions based on views

		OUT parameters and records

		OUT parameters

		Returning records

		Using RETURNS TABLE

		Returning with no predefined structure

		Returning SETOF ANY

		Variadic argument lists

		Summary of RETURN SETOF variants

		Returning cursors

		Iterating over cursors returned from another function

		Wrap up of functions returning a cursor(s)

		Other ways to work with structured data

		Complex data types for modern world – XML and JSON

		XML data type and returning data as XML from functions

		Returning data in the JSON format

		Summary

		Chapter 5:
PL/pgSQL Trigger Functions

		Creating the trigger function

		Creating the trigger

		Simple "Hey, I'm called" trigger

		The audit trigger

		Disallowing DELETE

		Disallowing TRUNCATE

		Modifying the NEW record

		Timestamping trigger

		Immutable fields trigger

		Controlling when a trigger is called

		Conditional trigger

		Trigger on specific field changes

		Visibility

		And most importantly – use triggers cautiously!

		Variables passed to the PL/pgSQL TRIGGER function

		Summary

		Chapter 6:
Debugging PL/pgSQL

		''Manual'' debugging with RAISE NOTICE

		Throwing exceptions

		Logging to a file

		Advantages of RAISE NOTICE

		Disadvantages of RAISE NOTICE

		Visual debugging

		Getting the debugger installed

		Installing pgAdmin3

		Using the debugger

		Advantages of the debugger

		Disadvantages of the debugger

		Summary

		Chapter 7:
Using Unrestricted Languages

		Are untrusted languages inferior to trusted ones?

		Will untrusted languages corrupt the database?

		Why untrusted?

		Why PL/Python?

		Quick introduction to PL/Python

		A minimal PL/Python function

		Data type conversions

		Writing simple functions in PL/Python

		A simple function

		Functions returning a record

		Table functions

		Running queries in the database

		Running simple queries

		Using prepared queries

		Caching prepared queries

		Writing trigger functions in PL/Python

		Exploring the inputs of a trigger

		A log trigger

		Constructing queries

		Handling exceptions

		Atomicity in Python

		Debugging PL/Python

		Using plpy.notice() for tracking the function's progress

		Using assert

		Redirecting sys.stdout and sys.stderr

		Thinking out of the "SQL database server" box

		Generating thumbnails when saving images

		Sending an e-mail

		Summary

		Chapter 8:
Writing Advanced
Functions in C

		Simplest C function – return (a + b)

		add_func.c

		Version 0 call conventions

		Makefile

		CREATE FUNCTION add(int, int)

		add_func.sql.in

		Summary for writing a C function

		Adding functionality to add(int, int)

		Smart handling of NULL arguments

		Working with any number of arguments

		Basic guidelines for writing C code

		Memory allocation

		Use palloc() and pfree()

		Zero-fill the structures

		Include files

		Public symbol names

		Error reporting from C functions

		"Error" states that are not errors

		When are messages sent to the client

		Running queries and calling PostgreSQL functions

		Sample C function using SPI

		Visibility of data changes

		More info on SPI_* functions

		Handling records as arguments or returned values

		Returning a single tuple of a complex type

		Extracting fields from an argument tuple

		Constructing a return tuple

		Interlude – what is Datum

		Returning a set of records

		Fast capturing of database changes

		Doing something at commit/rollback

		Synchronizing between backends

		Additional resources for C

		Summary

		Chapter 9:
Scaling Your Database
with PL/Proxy

		Simple single-server chat

		Dealing with success – splitting tables over multiple databases

		What expansion plans work and when

		Moving to a bigger server

		Master-slave replication – moving reads to slave

		Multimaster replication

		Data partitioning across multiple servers

		Splitting the data

		PL/Proxy – the partitioning language

		Installing PL/Proxy

		PL/Proxy language syntax

		CONNECT, CLUSTER, and RUN ON

		SELECT and TARGET

		SPLIT – distributing array elements over several partitions

		Distribution of data

		Configuring PL/Proxy cluster using functions

		Configuring PL/Proxy cluster using SQL/MED

		Moving data from the single to the partitioned database

		Summary

		Chapter 10:
Publishing Your Code as PostgreSQL Extensions

		When to create an extension

		Unpackaged extensions

		Extension versions

		The .control file

		Building an extension

		Installing an extension

		Publishing your extension

		Introduction to the PostgreSQL Extension Network

		Signing up to publish your extension

		Creating an extension project the easy way

		Providing the metadata about the extension

		Writing your extension code

		Creating the package

		Submitting the package to PGXN

		Installing an extension from PGXN

		Summary

		Index

